AI Article Synopsis

  • - Changes in aggrecan levels in articular cartilage are linked to osteoarthritis (OA), a common joint disease, with SOX9 acetylation affecting ACAN gene activation.
  • - In primary chondrocytes from OA cartilage, decreased ACAN mRNA and increased acetylated SOX9 were observed, with SOX9 localization varying between damaged and intact tissues.
  • - Deacetylation of SOX9 enhances its nuclear translocation and ability to activate ACAN, especially in 3D cultures that showed improved binding to the ACAN enhancer compared to traditional 2D cultures.

Article Abstract

Changes in the content of aggrecan, an essential proteoglycan of articular cartilage, have been implicated in the pathophysiology of osteoarthritis (OA), a prevalent age-related, degenerative joint disease. Here, we examined the effect of SOX9 acetylation on ACAN transactivation in the context of osteoarthritis. Primary chondrocytes freshly isolated from degenerated OA cartilage displayed lower levels of ACAN mRNA and higher levels of acetylated SOX9 compared with cells from intact regions of OA cartilage. Degenerated OA cartilage presented chondrocyte clusters bearing diffused immunostaining for SOX9 compared with intact cartilage regions. Primary human chondrocytes freshly isolated from OA knee joints were cultured in monolayer or in three-dimensional alginate microbeads (3D). SOX9 was hypo-acetylated in 3D cultures and displayed enhanced binding to a -10 kb ACAN enhancer, a result consistent with higher ACAN mRNA levels than in monolayer cultures. It also co-immunoprecipitated with SIRT1, a major deacetylase responsible for SOX9 deacetylation. Finally, immunofluorescence assays revealed increased nuclear localization of SOX9 in primary chondrocytes treated with the NAD SIRT1 cofactor, than in cells treated with a SIRT1 inhibitor. Inhibition of importin β by importazole maintained SOX9 in the cytoplasm, even in the presence of NAD. Based on these data, we conclude that deacetylation promotes SOX9 nuclear translocation and hence its ability to activate ACAN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854920PMC
http://dx.doi.org/10.1111/acel.12456DOI Listing

Publication Analysis

Top Keywords

sox9
9
sox9 nuclear
8
human chondrocytes
8
primary chondrocytes
8
chondrocytes freshly
8
freshly isolated
8
degenerated cartilage
8
acan mrna
8
sox9 compared
8
acan
6

Similar Publications

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Context: Duplications occurring upstream of the SOX9 gene have been identified in a limited subset of patients with 46,XX testicular/ovotesticular differences/disorders of sex development (DSD). However, comprehensive understanding regarding their clinical presentation and diagnosis is limited.

Objective: To gain further insight into the diagnosis of a large cohort of 46,XX individuals with duplications upstream of SOX9.

View Article and Find Full Text PDF

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin Sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined.

View Article and Find Full Text PDF

Functional analysis of SRY variants in individuals with 46,XY differences of sex development.

Mol Cell Endocrinol

January 2025

Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia. Electronic address:

In mammals, male sexual development is initiated by the expression of the Sex-determining-Region-Y (SRY) gene. SRY contains a highly conserved high mobility group (HMG) box essential for DNA binding and activity. Variants in SRY cause Differences of Sex Development (DSD), accounting for 10-15% of 46, XY gonadal dysgenesis cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!