Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.13688 | DOI Listing |
Biochem Biophys Res Commun
February 2025
Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:
In budding yeast, endosomal sorting complex required for transport (ESCRT) mediates microautophagy by vacuolar membrane invagination into the vacuolar lumen, followed by Vps4-assisted membrane constriction and abscission. Here, we show that ESCRT elicits vacuolar fission in the absence of Vps4 after nutrient starvation, although vacuolar fusion is facilitated in wild-type cells in these conditions. ESCRT mediated vacuolar membrane invagination in vps4Δ cells, thereby causing vacuolar fission.
View Article and Find Full Text PDFmBio
December 2024
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India.
The ESCRT (Endosomal Sorting Complex Required for Transport) machinery comprising protein complexes ESCRT-0 to ESCRT-III and Vps4 plays a pivotal role in intracellular trafficking, a process of endocytosing cell surface proteins into the cell for various biological activities. The ESCRT protein complexes are sequentially assembled which interact amongst each other to form a functional ESCRT machinery. Deregulation of these events are shown to be involved in various disease development including tumor formation and viral infections.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA.
The ESCRT pathway's AAA+ ATPase, Vps4p, remodels ESCRT-III complexes to drive membrane fission. Here, we use peptide binding assays to further the understanding of substrate specificity and the mechanism of autoinhibition. Our results reveal unexpected sequence preference to the substrate binding groove and an elegant mechanism of regulation that couples localization to substrate with release from autoinhibition.
View Article and Find Full Text PDFJ Cell Sci
September 2024
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!