Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exocytosis is a highly regulated intercellular communication process involving various membrane proteins, lipids, and cytoskeleton restructuring. These components help control granule fusion with the cell membrane, creating a pore through which granular contents are released into the extracellular environment. Platelets are an ideal model system for studying exocytosis due to their lack of a nucleus, resulting in decreased membrane regulation in response to cellular changes. In addition, platelets contain fewer granules than most other exocytosing cells, allowing straightforward measurement of individual granule release with carbon-fiber microelectrode amperometry. This technique monitors the concentration of serotonin, an electroactive molecule found in the dense-body granules of platelets, released as a function of time, with 50 μs time resolution, revealing biophysical characteristics of the fundamental exocytotic process. Variations in fusion pore formation and closure cause deviations from the classic current versus time spike profile and may influence diffusion of serotonin molecules from the site of granule fusion. Physiologically, the delivery of smaller packets of chemical messengers or the prolonged delivery of chemical messengers may represent how cells/organisms tune biological response. The goals of this work are twofold: 1) to categorize secretion features that deviate from the traditional mode of secretion and 2) to examine how changing the cholesterol composition of the platelet membrane results in changes in the pore formation process. Results herein indicate that the expected traditional mode of release is actually in the minority of granule content release events. In addition, results indicate that as the cholesterol content of the plasma membrane is increased, pore opening is less continuous.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776030 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.12.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!