Benefits and Limitations of Low-kV Macromolecular Imaging of Frozen-Hydrated Biological Samples.

Biophys J

Centre for Advanced Materials, Universität Heidelberg, Heidelberg, Germany; Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg, Germany. Electronic address:

Published: February 2016

Object contrast is one of the most important parameters of macromolecular imaging. Low-voltage transmission electron microscopy has shown an increased atom contrast for carbon materials, indicating that amplitude contrast contributions increase at a higher rate than phase contrast and inelastic scattering. Here, we studied image contrast using ice-embedded tobacco mosaic virus particles as test samples at 20-80 keV electron energy. The particles showed the expected increase in contrast for lower energies, but at the same time the 2.3-nm-resolution measure decayed more rapidly. We found a pronounced signal loss below 60 keV, and therefore we conclude that increased inelastic scattering counteracts increased amplitude contrast. This model also implies that as long as the amplitude contrast does not increase with resolution, beam damage and multiple scattering will always win over increased contrast at the lowest energies. Therefore, we cannot expect that low-energy imaging of conventionally prepared samples would provide better data than state-of-the-art 200-300 keV imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776044PMC
http://dx.doi.org/10.1016/j.bpj.2016.01.023DOI Listing

Publication Analysis

Top Keywords

amplitude contrast
12
contrast
9
macromolecular imaging
8
inelastic scattering
8
benefits limitations
4
limitations low-kv
4
low-kv macromolecular
4
imaging
4
imaging frozen-hydrated
4
frozen-hydrated biological
4

Similar Publications

To date, there have been no studies on the dynamics of areas of pain, paraesthesia and hypoesthesia after the use of various transcutaneous electrical nerve stimulation in the treatment of meralgia paresthetica. In this pilot study, we observed 68 patients with obesity-related bilateral meralgia paresthetica. Pain syndrome, paraesthesia symptoms, and hypoesthesia were evaluated using 10-point scores.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This study introduces elliptical vibration micro-turning as a method for producing silk fibroin particles in the form of cutting chips to serve as carriers for drug delivery systems.

View Article and Find Full Text PDF

Huntingtin plays an essential role in the adult hippocampus.

Neurobiol Dis

January 2025

Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:

The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.

View Article and Find Full Text PDF

On the geometric phase effects on time evolution of the density matrix during modulated radiofrequency pulses.

J Magn Reson

January 2025

Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA. Electronic address:

In this work the effect of the geometric phase on time evolution of the density matrix was evaluated during nonadiabatic radiofrequency (RF) pulses with Sine amplitude modulation (AM) and Cosine frequency modulation (FM) functions of the RAFF (Relaxations Along a Fictitious Field) family, and the polarization between two energy level ½ spin system coupled by dipolar interaction was evaluated during the application of RF irradiation. The dependencies of the diagonal density matrix elements and the polarization on the rotational correlation times and the time during RF pulses were evaluated. The general treatment of the density matrix elements along with the polarization generated during RF pulses was unavailable thus far, and for the first time was here derived for the nonadiabatic case of the RAFF pulses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!