Determination of pK(a) Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres.

Anal Chem

Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.

Published: March 2016

A simple and novel method is proposed here for the first time to determine pK(a) values of chromogenic hydrophobic pH sensitive probes directly in nanospheres. pK(a) values can be obtained by measuring the pH response of the nanospheres (containing the probes and ion exchanger) followed by measuring the pH and Na(+) responses of the nanospheres (containing solvatochromic dyes and ion exchanger). The pK(a) values of four chromoionophores were successfully determined. This method is in principle also applicable to characterize colorimetric probes in other water immiscible nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b04671DOI Listing

Publication Analysis

Top Keywords

pka values
16
sensitive probes
8
ion exchanger
8
determination pka
4
values
4
values hydrophobic
4
hydrophobic colorimetric
4
colorimetric sensitive
4
probes
4
nanospheres
4

Similar Publications

This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.

View Article and Find Full Text PDF

Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques.

View Article and Find Full Text PDF

The electrochemical proton reactivity of transition metal complexes has received intensive attention in catalyst research. The proton-coupled electron transfer (PCET) process, influenced by the coordination geometry, determines the catalytic reaction mechanisms. Additionally, the p value of a proton source, as an external factor, plays a crucial role in regulating the proton transfer step.

View Article and Find Full Text PDF

Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by (1-octanol-water distribution coefficient logarithm), and acidity/basicity, measured by (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard and assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class.

View Article and Find Full Text PDF

Interpretable Deep-Learning p Prediction for Small Molecule Drugs via Atomic Sensitivity Analysis.

J Chem Inf Model

January 2025

Department of Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.

Machine learning (ML) models now play a crucial role in predicting properties essential to drug development, such as a drug's logscale acid-dissociation constant (p). Despite recent architectural advances, these models often generalize poorly to novel compounds due to a scarcity of ground-truth data. Further, these models lack interpretability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!