Aims: To analyse lactic acid bacteria (LAB) diversity and technological-functional and safety properties of strains present during spontaneous fermented quinoa sourdoughs.

Methods And Results: Fermentation was performed by daily backslopping at 30°C for 10 days. Autochthonous LAB microbiota was monitored by a biphasic approach combining random amplified polymorphic DNA (RAPD)-PCR and rRNA gene sequencing with PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Identification and intraspecies differentiation allowed to group isolates within nine LAB species belonging to four genera. A succession of LAB species occurred during 10-days backslopping; Lactobacillus plantarum and Lactobacillus brevis were detected as dominant species in the consortium. The characterization of 15 representative LAB strains was performed based on the acidifying capacity, starch and protein hydrolysis, γ-aminobutyric acid and exopolysaccharides production, antimicrobial activity and antibiotic resistance.

Conclusion: Strains characterization led to the selection of Lact. plantarum CRL1905 and Leuconostoc mesenteroides CRL1907 as candidates to be assayed as functional starter culture for the gluten-free (GF) quinoa fermented products.

Significance And Impact Of The Study: Results on native LAB microbiota present during quinoa sourdough fermentation will allow the selection of strains with appropriate technological properties to be used as a novel functional starter culture for GF-fermented products.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.13104DOI Listing

Publication Analysis

Top Keywords

lactic acid
8
acid bacteria
8
fermented quinoa
8
lab microbiota
8
lab species
8
functional starter
8
starter culture
8
lab
6
biodiversity technological-functional
4
technological-functional potential
4

Similar Publications

Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Pharmaceutics

January 2025

Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.

Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.

View Article and Find Full Text PDF

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (PLGA) as a solubility enhancer. : An antisolvent precipitation technique was employed to incorporate PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-PLGA.

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!