Many empirical studies of metacommunities have focused on the classification of observational patterns into four contrasting paradigms characterized by different levels of movement and habitat heterogeneity. However, deeper insight into the underlying local and regional processes may be derived from a combination of long-term observational data and experimental studies. With the aim of exploring forces structuring the insect metacommunity on oak, we fit a hierarchical Bayesian state-space model to data from observations and experiments. The fitted model reveals large variation in species-specific dispersal abilities and basic reproduction numbers, R0. The residuals from the model show only weak correlations among species, suggesting a lack of strong interspecific interactions. Simulations with model-derived parameter estimates indicate that habitat configuration and species attributes both contribute substantially to structuring insect communities. Overall, our findings demonstrate that community-level variation in movement and life history are key drivers of metacommunity dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/15-0180.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!