What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM)? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features. To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwise∖counter-clockwise judgment). First, we show that a change in the dots' contrast polarity does not hamper performance. Next, we demonstrate that performance is unaffected by relocation of the Test stimulus in either retinotopic or spatiotopic coordinate frames. Finally, we show that an arrow-shaped cue presented during the delay interval between the Sample and Test stimulus, strongly biases performance toward the direction of the arrow, although the cue itself is non-informative (it has no predictive value of the correct answer). These results indicate that the representation of motion direction in WM could be independent of the physical features of the stimulus (polarity or position) and has non-sensorial abstract qualities. It is plausible that an abstract mnemonic trace might be activated alongside a more basic, analog representation of the stimulus. We speculate that the specific sensitivity of the mnemonic representation to the arrow-shaped symbol may stem from the long term learned association between direction and the hour in the clock.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754772 | PMC |
http://dx.doi.org/10.3389/fpsyg.2016.00165 | DOI Listing |
J Neuroeng Rehabil
January 2025
Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.
Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.
Curr Rev Musculoskelet Med
January 2025
Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.
Purpose Of Review: With the growing popularity and broadening indications for Reverse Shoulder Arthroplasty (RSA), increasing modularity in design and adjustments to each component can enhance postoperative range of motion (ROM), thus expanding treatment capabilities. This review outlines the advancements developed to optimize ROM through modifications in glenoid and humeral components and the integration of computational tools for surgical planning.
Recent Findings: Enhancements in glenoid component design aim to mitigate complications like scapular notching and improve ROM, particularly in abduction and external rotation.
Carbohydr Polym
March 2025
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF was selected for subsequent in vitro and in vivo healing promotion studies.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China. Electronic address:
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!