This study aims to assess multi-gene panel testing in an ethnically diverse clinical cancer genetics practice. We conducted a retrospective study of individuals with a personal or family history of cancer undergoing clinically indicated multi-gene panel tests of 6-110 genes, from six commercial laboratories. The 475 patients in the study included 228 Hispanics (47.6%), 166 non-Hispanic Whites (35.4%), 55 Asians (11.6%), 19 Blacks (4.0%), and seven others (1.5%). Panel testing found that 15.6% (74/475) of patients carried deleterious mutations for a total of 79 mutations identified. This included 7.4% (35/475) of patients who had a mutation identified that would not have been tested with a gene-by-gene approach. The identification of a panel-added mutation impacted clinical management for most of cases (69%, 24/35), and genetic testing was recommended for the first degree relatives of nearly all of them (91%, 32/35). Variants of uncertain significance (VUSs) were identified in a higher proportion of tests performed in ethnic minorities. Multi-gene panel testing increases the yield of mutations detected and adds to the capability of providing individualized cancer risk assessment. VUSs represent an interpretive challenge due to less data available outside of White, non-Hispanic populations. Further studies are necessary to expand understanding of the implementation and utilization of panels across broad clinical settings and patient populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835267 | PMC |
http://dx.doi.org/10.1016/j.cancergen.2015.12.013 | DOI Listing |
Breast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFGenome Med
January 2025
Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.
Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
Background: Conventional tests for inherited thrombophilia focus on the five most-established inherited thrombophilias; i.e. deficiencies in antithrombin, protein C, and protein S, and the factor V Leiden and prothrombin G20210A variants.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
December 2024
Veracity Neuroscience LLC, Memphis, Tennessee, USA.
Background: mutations are associated with a diverse set of distinct neurological syndromes and intermediate phenotypes that may include extra-neural features. Overall, genotype-phenotype correlations are weak. There are no consensus treatments.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
one of the most aggressive pectinolytic phytopathogens, causes blackleg disease in potatoes, resulting in significant economic losses and adversely impacting one of the world's most important food crops. The diagnostics methods are critical in monitoring the latent infection for international trade of potato seed tubers and in implementation of control strategies. Our study employed a whole-genome comparative approach, identifying unique target gene loci (LysR and TetR family of transcriptional regulators gene regions) and designing loop-mediated isothermal amplification (LAMP) and a multi-gene-based multiplex TaqMan qPCR assays for specific detection and differentiation of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!