Silkworm metamorphosis is governed by the intrinsic and extrinsic factors. One key intrinsic factor is the temporal electrical firing of the neuro-secretory cells of the dormant pupae residing inside the silk cocoon membrane (SCM). Extrinsic factors are environmental like temperature, humidity and light. The firing pattern of the cells is a function of the environmental factors that eventually controls the pupal development. How does the nervous organization of the dormant pupae sense the environment even while enclosed inside the cocoon shell? We propose that the SCM does this by capturing the incident light and converting it to electricity in addition to translating the variation in temperature and humidity as an electrical signal. The light to electricity conversion is more pronounced with ultraviolet (UV) frequency. We discovered that a UV sensitive fluorescent quercetin derivative that is present on the SCM and pupal body surface is responsible for generating the observed photo current. Based on these results, we propose an equivalent circuit model of the SCM where an overall electrical output transfers the weather information to pupae, directing its growth. We further discuss the implication of this electrical energy conversion and its utility for consumable electricity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764832 | PMC |
http://dx.doi.org/10.1038/srep21915 | DOI Listing |
J Funct Biomater
January 2025
National Research Council, Institute for Organic Synthesis and Photoreactivity (CNR-ISOF), Via P. Gobetti 101, 40129 Bologna, Italy.
In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, low immunogenicity, and adaptability. Among these proteins, keratin, extracted from waste wool, and fibroin, derived from cocoons, exhibit exceptional properties such as mechanical strength, cell adhesion capabilities, and suitability for various fabrication methods.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China.
Background: Nano(micro)plastics (NMPs) and agrochemicals are ubiquitous pollutants. The small size and physicochemical properties of NMPs make them potential carriers for pollutants, affecting their bioavailability and impact on living organisms. However, little is known about their interactions in terrestrial ecosystems.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China. Electronic address:
Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care.
View Article and Find Full Text PDFInsects
December 2024
Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Silkworm () is an economically significant insect that produces silk and makes important contributions to the development of silk-producing countries. The genetic diversity and unique adaptive traits of silkworm germplasm resources form the foundation for breeding efforts. In various geographical regions, silkworm have developed distinct traits through long-term adaptive selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!