This paper presents a spectroscopic investigation of deoxyperidinin, a synthetic peridinin analogue in which the carbonyl functional group in peridinin was replaced by a nonconjugated methylene group. Steady-state and ultrafast time-resolved absorption and fluorescence spectroscopic experiments are carried out on deoxyperidinin in n-hexane and acetonitrile at room temperature and in 2-methyltetrahydrofuran at 77 K. The spectra of deoxyperidinin have higher vibronic resolution compared to those of peridinin. The higher resolution is due to a substantial reduction in both molecular conformational disorder and inhomogeneous broadening of the spectra of deoxyperidinin compared to peridinin. Features in the steady-state absorption spectrum of deoxyperidinin that are not evident in the spectrum of peridinin are unambiguously assigned to the forbidden S0 (1(1)Ag(-)) → S1 (2(1)Ag(-)) absorption transition. The characteristics of both the steady-state and time-resolved spectra are interpreted using EOM-CCSD, SAC-CI, and MNDO-PSDCI quantum computational formalisms that provided a theoretical framework for understanding the photophysical properties of the molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b00439DOI Listing

Publication Analysis

Top Keywords

spectroscopic investigation
8
spectra deoxyperidinin
8
compared peridinin
8
deoxyperidinin
6
peridinin
5
investigation carotenoid
4
carotenoid deoxyperidinin
4
deoxyperidinin direct
4
direct observation
4
observation forbidden
4

Similar Publications

Design, Synthesis, Biocompatibility, molecular docking and molecular dynamics studies of novel Benzo[b]thiophene-2-carbaldehyde derivatives targeting human IgM Fc Domains.

Bioorg Chem

January 2025

Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India; Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India. Electronic address:

In this study, three novel derivatives of benzo[b]thiophene-2-carbaldehyde (BTAP1, BTAP2, and BTAP3) were successfully synthesized and comprehensively characterized using spectroscopic techniques including FTIR, UV-VIS, HNMR, and CNMR. Thermal analysis through TGA and DTA demonstrated remarkable thermal stability with a maximum threshold at 270 °C. Spectroscopic investigations revealed π → π* transitions in all compounds, attributed to the conjugated system comprising benzothiophene rings connected to bromophenyl/ aminophenyl/phenol rings via α, β-unsaturated ketone bridges.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

, a high-altitude medicinal herb, possesses diverse therapeutic properties. This study conducted a comprehensive phytochemical analysis of the whole plant, leading to the isolation of 15 secondary metabolites (1-15) across various classes: flavonoids (), triterpenoids (, ), sesquiterpenoid lactones (, ) and furanocoumarins (, ) along with three steroids (). These compounds were characterized using NMR (HNMR,C NMR, 2D NMR), IR, HRMS and UV-VIS.

View Article and Find Full Text PDF

Photo-induced force microscopy (PiFM) uses laser modulation at the atomic force microscope cantilever's typical mechanical resonance frequency, to encode the material near-field response in the probes nanomechanics. While this technique offers the simplicity gained by mechanical detection, it can be challenging for hyperspectral measurements. Modulation in the visible and near-infrared ranges, often involves using acousto-optic modulators that introduce a wavelength-dependent laser steering, detrimental for spectroscopic purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!