In order to improve the inherently poor mechanical properties of hydroxyapatite (HAp) and to increase its feasibility as load bearing implant material, in the present investigation, functionalised (HFC1 and HFC2) and non-functionalized (HC1 and HC2) multi-walled carbon nanotubes were used as reinforcing material with HAp. Significant improvement with respect to fracture toughness, flexural strength and impact strength of the composites was noticed. In vitro biological properties of HAp-carbon nanotube (CNT) biocomposites have also favored uniform and systematic apatite growth on their surface. Subsequently, in vivo osseous ingrowth at bone defect of rabbit femur was evaluated and compared using radiology, push out test, fluorochrome labeling, histology and scanning electron microscopy after 2 and 4 months respectively. The results demonstrated growth of web like soft callus from the host bone towards the implant, ensuring strong host bone interaction. Toxicological studies of the liver and kidney cells exhibited no abnormality, thereby confirming non-toxicity of the CNT in the animal body. Host-implant biomechanical strength showed high interfacial strength of the composites, indicating their high potentials to be used for bone remodeling applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2016.02.005DOI Listing

Publication Analysis

Top Keywords

strength composites
8
host bone
8
enhanced bone
4
bone regeneration
4
regeneration carbon
4
carbon nanotube
4
nanotube reinforced
4
reinforced hydroxyapatite
4
hydroxyapatite animal
4
animal model
4

Similar Publications

Light, strong, and radiation-tolerant materials are essential for advanced nuclear systems and aerospace applications. However, the comprehensive properties of current radiation-tolerant materials are far from being satisfactory in harsh operating environments. In this study, a high-throughput-designed NbVTaSi refractory eutectic medium entropy alloy realizes the controllable formation of the β-NbSi phase with a high content and has outstanding comprehensive properties, i.

View Article and Find Full Text PDF

Response of Differently Structured Dental Polymer-Based Composites to Increasingly Aggressive Aging Conditions.

Nanomaterials (Basel)

January 2025

Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.

Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.

Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.

View Article and Find Full Text PDF

Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process.

Nanomaterials (Basel)

January 2025

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.

Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process.

View Article and Find Full Text PDF

This study aimed to determine the association between chronic schizophrenia, extrapyramidal symptoms (EPSs), body composition, nutritional status, and dynapenia/sarcopenia. Data from 68 chronic patients with schizophrenia were analyzed using Spearman's rho correlation coefficients, Kruskal-Wallis test, Mann-Whitney U test, and Cramér's V statistics. Among the participants, 32.

View Article and Find Full Text PDF

Background: Breast cancer treatments often cause serious side effects, but physical exercise has shown the potential to improve both the physical and psychological health outcomes of survivors. This review and meta-analysis aimed to synthesize and analyze the scientific evidence on the effectiveness of concurrent training on physical, psychological, and biomarkers variables on breast cancer survivors.; Methods: A systematic review and meta-analysis was registered in PROSPERO (CRD42024571851).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!