We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.003502DOI Listing

Publication Analysis

Top Keywords

ultrafast laser
8
waveguide lasers
8
chromium iron
8
iron doped
8
doped zinc
8
zinc selenide
8
uli waveguides
8
produced output
8
slope efficiency
8
power scaling
4

Similar Publications

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e.

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

PdSe/NbSe Heterojunction Photodetector with Broadband Detection and Polarization Sensitivity.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Polarized photodetectors based on anisotropic two-dimensional (2D) materials display great potential applications in communications and optoelectronics. However, the existence of high dark current, low anisotropic ratio, and response speed limits their development. In this paper, a broadband polarization angle-dependent photodetector based on the PdSe/NbSe van der Waals (vdW) heterojunction has been constructed.

View Article and Find Full Text PDF

TiCT MXene Composite with Much Improved Stability for Superior Humidity Sensors.

Langmuir

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China.

MXenes have attracted tremendous attention in electromagnetic interference shielding, energy storage, and gas and humidity detections because of their ultralarge surface area and abundant functional groups. However, their poor stability against hydration and oxidation makes them challenging for long-term storage and applications. Herein, we proposed and demonstrated a TiCT MXene composite-based humidity sensor, of which the stability is pronouncedly enhanced by introducing an O adsorption competitor of extracted bentonite (EB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!