We present the electrical and optical characterization and theoretical modeling of the transient behavior of regular 4.5-μm single-mode emitting distributed feedback (DFB) quantum cascade lasers (QCLs). Low residual capacitance together with a high-frequency optimized three-terminal coplanar waveguide configuration leads to modulation frequencies up to 23.5 GHz (optical) and 26.5 GHz (electrical), respectively. A maximum 3-dB cut-off value of 6.6 GHz in a microwave rectification scheme is obtained, with a significant increase in electrical modulation bandwidth when increasing the DC-current for the entire current range of the devices. Optical measurements by means of FTIR-spectroscopy and a heterodyne beating experiment reveal the presence of a resonance peak, due to coupling of the lasing DFB- with its neighboring below-threshold Fabry-Pérot-(FP-)mode, when modulating around the cavity roundtrip frequency. This resonance is modeled by a 2-mode Maxwell-Bloch formalism. It enhances only one sideband and consequently leads to the first experimental observation of the single-sideband regime in such kind of devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.003294DOI Listing

Publication Analysis

Top Keywords

distributed feedback
8
quantum cascade
8
cascade lasers
8
rf-modulation mid-infrared
4
mid-infrared distributed
4
feedback quantum
4
lasers electrical
4
electrical optical
4
optical characterization
4
characterization theoretical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!