The tunneling effect and interface state in the p-Ge/GeO2p-Si structure of a wafer-bonding Ge/Si avalanche photodiode (APD) are investigated. It is found that the thin interfacial GeO2 layer (1-2 nm) formed by the hydrophilic reaction at the wafer-bonding interface significantly affects the performance of the Ge/Si APD. With the increase of the GeO2 thickness, the dark current of the Ge/Si APD decreases enormously due to the blocking effect of this GeO2 layer. Owing to the carrier accumulation in Ge layer under illumination condition, the voltage sharing effect of the GeO2 layer (thicker) becomes serious, leading to the absence of the electric field in Ge layer. The photon-generated electrons at Ge/GeO2 interface can be captured and released by the interface states at certain reverse bias. This can adjust the avalanche current of the Ge/Si APD. The stronger interface recombination induced by the larger interface state density (ISD) results in the decrease of the electric field in Ge layer. This increases the transit time of carriers, which in turn decreases the 3dB-bandwidth. Due to the drastic increase of the dark current (larger ISD), the gain of the Ge/Si APD decreases.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.001943DOI Listing

Publication Analysis

Top Keywords

ge/si apd
16
interface state
12
geo2 layer
12
voltage sharing
8
wafer-bonding ge/si
8
ge/si avalanche
8
avalanche photodiode
8
interfacial geo2
8
dark current
8
current ge/si
8

Similar Publications

Article Synopsis
  • Germanium/silicon (Ge/Si) avalanche photodiodes (APDs) are important for near-infrared detection and quantum communication, but most research has focused on just one optical communication band.
  • This study introduces a lateral separate absorption multiplication (SAM) APD and looks at its performance across different wavelengths, finding that it performs significantly better at L-band (1600 nm) than at C-band (1550 nm).
  • The research shows a gain-bandwidth product of 279 GHz, revealing insights into why higher gains occur and suggesting that Ge/Si APDs could play a bigger role in optical communication technology.
View Article and Find Full Text PDF

We present the design of Ge/Si avalanche photodetectors with SiN stressor-induced Ge strain for the C+L band light detection. By optimizing the placement position and thickness of the SiN layer with compressive stress, a uniform strain distribution with a maximum magnitude of 0.59% was achieved in Ge.

View Article and Find Full Text PDF

A high-performance waveguide-coupled lateral avalanche photodetector (APD) is experimentally demonstrated without silicon epitaxy and charge layer ion implantation. At the wavelength of 1550 nm, it shows a high responsivity of 48 A/W and a gain-bandwidth product (GBP) of 360 GHz. Wide-open eye diagrams at 25 Gbps can be observed at various avalanche gains.

View Article and Find Full Text PDF

High-performance waveguide-integrated Ge/Si APDs in separate absorption, charge, and multiplication (SACM) schemes have been exploited to facilitate energy-efficient optical communication and interconnects. However, the charge layer design is complex and time-consuming. A waveguide-integrated Ge/Si avalanche photodetector (APD) is proposed in a separate absorption and multiplication (SAM) configuration.

View Article and Find Full Text PDF

A high-performance waveguide Ge/Si avalanche photodiode operating at the O-band (1310 nm) is designed with a Ge/Si ridge waveguide defined by two shallow trenches in the active region and fabricated with simplified processes. The device shows a high primary responsivity of 0.96 A/W at the unit-gain voltage of -7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!