A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. | LitMetric

Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS2) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), are investigated in this work. Material characterization reveals the diffusion of sulfur into the oxide layer prior to the formation of the MS2. By controlling the sulfur diffusion, we are able to synthesize continuous MS2 layers beneath the top oxide layer, creating a protective coating layer for the newly formed TMD. Air-stable and low-power photosensing devices fabricated on the synthesized 2D WS2 without the need for a further transfer process demonstrate the potential applicability of TMDs generated via a laser irradiation process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b00033DOI Listing

Publication Analysis

Top Keywords

transition metal
16
laser irradiation
12
oxide layer
12
metal disulfides
8
irradiation process
8
protective coating
8
coating layer
8
metal
5
process
5
layer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!