Enantioselective cyclopropanation of (Z)-3-substituted-2-(4-pyridyl)-acrylonitriles catalyzed by Cinchona ammonium salts.

Org Biomol Chem

Centre for Synthesis and Chemical Biology (CSCB), Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.

Published: March 2016

Cyclopropane esters holding two quaternary centres were prepared in high yields, complete diastereoselection and up to 83% ee. The reaction described herein entailed reacting (Z)-3-substituted-2-(4-pyridyl)-acrylonitrile, a reactive class of Michael acceptor, with 2-bromomalonate esters in the presence of Cinchona derived phase-transfer catalysts. The reaction allowed multi-gram preparation of the desired products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob00154hDOI Listing

Publication Analysis

Top Keywords

enantioselective cyclopropanation
4
cyclopropanation z-3-substituted-2-4-pyridyl-acrylonitriles
4
z-3-substituted-2-4-pyridyl-acrylonitriles catalyzed
4
catalyzed cinchona
4
cinchona ammonium
4
ammonium salts
4
salts cyclopropane
4
cyclopropane esters
4
esters holding
4
holding quaternary
4

Similar Publications

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

Machine-Learning-Aided Engineering Hemoglobin as Carbene Transferase for Catalyzing Enantioselective Olefin Cyclopropanation.

JACS Au

December 2024

Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.

In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines.

J Am Chem Soc

January 2025

State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors.

View Article and Find Full Text PDF

A catalyst-in-bag system facilitates the recovery and recycling of chiral dirhodium carboxylate catalysts used for enantioselective, intermolecular cyclopropanation. The catalyst-in-bag system incorporates a soluble enantioselective dirhodium complex catalyst within a reusable, commercial dialysis membrane. Dirhodium catalysts of different sizes are examined, and two catalysts with molecular weights above 2400 Da are well-retained by the membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!