Identification of novel estrogen receptor (ER) agonists that have additional and complementary anti-cancer activities via ER-independent mechanism.

Bioorg Med Chem Lett

Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea. Electronic address:

Published: April 2016

AI Article Synopsis

  • The study identifies new compounds called bis(4-hydroxy)benzophenone oxime ether derivatives (e.g., 12c, 12e, 12h) that act as estrogen receptor (ER) agonists.
  • These compounds also exhibit anti-proliferative effects in cancer cells through mechanisms that do not involve the ER.
  • The findings suggest these novel drugs could address the limitations of current ER agonists like estradiol and tamoxifen, which can promote cancer cell growth.

Article Abstract

In this study, a series of bis(4-hydroxy)benzophenone oxime ether derivatives such as 12c, 12e and 12h were identified as novel estrogen receptor (ER) agonists that have additional and complementary anti-proliferative activities via ER-independent mechanism in cancer cells. These compounds are expected to overcome the therapeutic limitation of existing ER agonists such as estradiol and tamoxifen, which have been known to induce the proliferation of cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.01.089DOI Listing

Publication Analysis

Top Keywords

novel estrogen
8
estrogen receptor
8
receptor agonists
8
agonists additional
8
additional complementary
8
activities er-independent
8
er-independent mechanism
8
cancer cells
8
identification novel
4
complementary anti-cancer
4

Similar Publications

Estrogen, estrogen receptor and the tumor microenvironment of NSCLC.

Int J Cancer

January 2025

Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Lung cancer remains the foremost cause of cancer-related mortality worldwide. Clinical observations reveal a notable increase in both the proportion and mortality rate among female non-small cell lung cancer (NSCLC) patients compared to males, a trend that continues to escalate. Extensive preclinical research underscores the pivotal role of estrogen in the initiation, progression, prognosis, and treatment response of NSCLC.

View Article and Find Full Text PDF

Background: According to data from the Alzheimer's Association, more than two-thirds of patients living with Alzheimer's disease (AD) in the United States are women. The interplay between aging and hormone depletion during menopause has been proposed as a leading cause, but the molecular underpinnings of this vulnerability are not fully understood. On the one hand, approaches that seek to supplement estrogens to rescue pre-menopausal hormonal levels have had contradictory outcomes in clinical trials.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: An increase in the development of learning deficit occurred during estrogen-deprived periods via the increment of systemic and brain oxidative stress, brain apoptosis, and synaptic dysplasticity. Although estrogen supplementation has been shown to improve the brain function in estrogen-deprived conditions, it can lead to several adverse effects. Therefore, the novel therapeutic approach with minimal side effects to protect brain function in estrogen-deprived conditions should be further investigated.

View Article and Find Full Text PDF

Background: Estrogen is a master regulator of the bioenergetic system in the female brain, exerting broad control over metabolic processes from glucose transport to glycolysis, mitochondrial respiration, and ATP generation. The loss of estrogen during the perimenopausal transition is associated with decline in brain glucose metabolism and mitochondrial function which can contribute to the two-fold greater lifetime risk of Alzheimer's disease in postmenopausal women. While both ERα and ERβ have been reported to mediate E2 regulation of brain bioenergetic function, their cell-type specific contribution to bioenergetic homeostasis has yet to be elucidated.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Background: Accumulating evidence has shown the neuroprotective effects of estrogen on cognition function, for example delaying the cognitive deterioration in patients with Alzheimer's disease (AD). However, the clinical usage of estrogen in AD remains controversial. The cytochrome P450 aromatase encoded by CYP19A1, is a key enzyme catalyzing the C19 androgen conversion to C18 estrogen, which induces testosterone to estradiol and androstenedione to estrone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!