N-Nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) with many known precursors such as amine-containing pharmaceuticals that can enter the environment via treated wastewater. Reverse osmosis and tight nanofiltration membranes (MW cutoff < 200 Da) are treatment technologies that demonstrate high removal of many compounds, but at relatively high energy costs. Looser membranes (>200 Da) may provide sufficient removal of a wide range of contaminants with lower energy costs. This study examined the rejection of pharmaceuticals that are known NDMA precursors (∼300 Da) using nanofiltration (MW cutoff ∼350 Da). MQ water was compared to two raw water sources, and results illustrated that NDMA precursors (as estimated by formation potential testing) were effectively rejected in all water matrices (>84%). Mixtures of pharmaceuticals vs. single-spiked compounds were found to have no impact on rejection from the membranes used. The use of MQ water vs. surface waters illustrated that natural organic matter, colloids, and inorganic ions present did not significantly impact the rejection of the amine-containing pharmaceuticals. This study illustrates that NDMA formation potential testing can be effectively used for assessing NDMA precursor rejection from more complex samples with multiple and/or unknown NDMA precursors present, such as wastewater matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2016.02.002DOI Listing

Publication Analysis

Top Keywords

ndma precursors
12
amine-containing pharmaceuticals
8
energy costs
8
formation potential
8
potential testing
8
testing effectively
8
impact rejection
8
ndma
6
rejection
5
precursors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!