E2F1-CDK1 pathway activation in kanamycin-induced spiral ganglion cell apoptosis and the protective effect of CR8.

Neurosci Lett

Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China. Electronic address:

Published: March 2016

Cochlear hair cell loss results in the secondary loss of spiral ganglion cells (SGCs). The death of these SGCs is due to apoptosis. The E2F1-cyclin dependent kinase 1 (CDK1) pathway is believed to represent an important mechanism of neuronal cell death. However, the role of this pathway in spiral ganglion neuronal apoptosis has not yet been reported. In this study, we deafened guinea pigs with a subcutaneous injection of kanamycin followed by an intravenous infusion of furosemide and then assayed the expression levels of cleaved caspase-3, E2F1, CDK1 and cleaved caspase-9 during the induced SGC apoptosis. Our results revealed that co-administration of kanamycin and furosemide rapidly induced hair cell loss in the guinea pigs and then resulted in a progressive loss of SGCs. Expression levels of E2F1 and CDK1 were obviously up-regulated at 1 and 3 days after deafening. Cleaved caspase-9 also increased robustly 1 or 2 weeks after the deafening procedure. The up-regulation of E2F1, CDK1 and cleaved caspase-9 was significantly attenuated by the systemic injection of CR8 (1mg/kg/day, intraperitoneally) starting at 5min after deafening. These findings indicate that the activation of the E2F1-CDK1 pathway and cell cycle re-entry contributes to the apoptosis of SGCs and that the selective inhibition of this signaling cascade may represent an attractive therapeutic strategy. CR8 has the potential to protect SGCs from apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2016.02.034DOI Listing

Publication Analysis

Top Keywords

spiral ganglion
12
e2f1 cdk1
12
cleaved caspase-9
12
e2f1-cdk1 pathway
8
hair cell
8
cell loss
8
sgcs apoptosis
8
guinea pigs
8
expression levels
8
cdk1 cleaved
8

Similar Publications

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation.

Adv Sci (Weinh)

December 2024

Department of Neurology, Aerospace Center Hospital, School of Life, Beijing Institute of Technology, Beijing, 100081, China.

The World Health Organization (WHO) reports that by 2050, nearly 2.5 billion people are expected to have some degree of hearing loss (HL) and at least 700 million will need hearing rehabilitation. Therefore, there is an urgent need to develop treatment strategies for HL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!