Background: To evaluate the clinical outcomes of a group of patients affected by knee osteoarthritis (OA) treated with MD-Knee (Guna S.p.a., Milan, Italy) versus a group of patients treated with sodium hyaluronate.

Method: This non-inferiority prospective randomized controlled trial involved 60 patients affected by knee OA, grade 2-3 of Kellgren-Lawrence scale. The MD-Knee Group, Group A (n = 29) was administered five intra-articular injections at 1 week interval; the sodium hyaluronate Group, Group B (n = 31), was administered five doses of intra-articular injection of sodium hyaluronate at 1 week interval. All patients were prospectively evaluated before and at 3 and 6 months after the treatment by the Lequesne Knee Index (LKI) as primary endpoint and the Visual Analogue Scale (VAS), Pain Killer consumption and SF-36 questionnaires as secondary endpoints.

Results: At the 3- and 6 month follow-up, LKI and VAS improved significantly in both groups compared to baseline and no statistically significant differences were observed between Group A and Group B. There was no statistically significant difference in the SF36 questionnaire score and pain killer consumption between two groups at any time point.

Conclusions: This study shows that both preparations exert similar clinical effects as assessed through multiple outcome measures. MD-Knee is effective on knee OA symptoms over 6 months after a 5-weekly injection course, and it is equally effective as the reference sodium hyaluronate.

Trial Registration Number: ISRCTN93862496 . Registration date: January 18th, 2016.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763423PMC
http://dx.doi.org/10.1186/s12891-016-0948-4DOI Listing

Publication Analysis

Top Keywords

sodium hyaluronate
12
patients knee
12
group group
12
knee osteoarthritis
8
group
8
group patients
8
group administered
8
week interval
8
pain killer
8
killer consumption
8

Similar Publications

Multifunctional drug delivery nanoparticles for combined chemotherapy/chemodynamic/photothermal therapy against colorectal cancer through synergistic cuproptosis/ferroptosis/apoptosis.

Mater Today Bio

February 2025

College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.

The use of combination therapies that employ a variety of cell death mechanisms has emerged as a promising avenue of research in the treatment of cancer. However, the optimization of therapeutic synergies when integrating different modes remains a significant challenge. To this end, we developed a multifunctional intelligent drug-carrying nanoparticle (DFMTCH NPs) based on the metal-organic framework MIL-100, loaded with doxorubicin (DOX) and disulfiram (DSF), coated with a Cu-tannic acid (Cu-TA) network and hyaluronic acid (HA), for the purpose of combined chemotherapy/chemodynamic/photothermal anti-cancer therapy.

View Article and Find Full Text PDF

Reactive Oxygen Species-Responsive Gel-Based Microneedle Patches with Antimicrobial and Immunomodulating Properties for Oral Mucosa Disease Treatment.

ACS Biomater Sci Eng

January 2025

Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.

Oral ulcer wounds are difficult to heal due to bacterial infections, persistent inflammatory responses, and excessive reactive oxygen species (ROS). Therefore, the elimination of bacteria, removal of ROS, and reduction of inflammation are prerequisites for the treatment of mouth ulcer wounds. In this study, oligomeric proanthocyanidins (OPC) and 3-(aminomethyl)phenylboronic acid-modified hyaluronic acid (HP) were used to form polymer gels through dynamic covalent borate bonds.

View Article and Find Full Text PDF

Background: Deepening of the nasolabial fold (NLF), drooping of the nasal tip, and facial expressions perceived as angry face, are common esthetic concerns. However, no studies have correlated this set of signs and symptoms with common anatomical causes. We review anatomical considerations of the region and propose a combined treatment modality.

View Article and Find Full Text PDF

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

Inspired by natural microbial cooperation, a co-culture approach was used to synthesize bacterial nanocellulose (BNC)-based nanocomposites for potential wound healing applications. By co-culturing either Komagataeibacter xylinus (K1G4) or the never tested strain K. rhaeticus (K2G46) with the hyaluronic acid (HA)-producer Lacticaseibacillus casei UMCC 2535, two BNC-HA nanocomposites were obtained (C1-K1 and C2-K2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!