The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality.

Sci Rep

State Key Laboratory for Crop Stress Biology in Arid Areas, Yangling, Shaanxi, 712100, China.

Published: February 2016

The green peach aphid, Myzus persicae Sulzer, is a notorious pest on vegetables, which often aggregates in high densities on crop leaves. In this study, we investigated whether M. persicae could suppress the resistance level of Chinese cabbage Brassica pekinensis. M. persicae performed better in terms of weight gain (~33% increase) and population growth (~110% increase) when feeding on previously infested (pre-infested) Chinese cabbage compared with those on non-infested plants. However, when given a choice, 64% of the aphids preferred to settle on non-infested leaves, while 29% of aphids chose pre-infested leaves that had a 2.9 times higher concentration of glucosinolates. Aphid feeding significantly enhanced the amino acid:sugar ratio of phloem sap and the absolute amino acid concentration in plant leaves. Aphid infestation significantly increased the expression levels of salicylic acid (SA) marker genes, while it had marginal effects on the expression of jasmonate marker genes. Exogenously applied SA or methyl jasmonate had no significant effects on M. persicae performance, although these chemicals increased glucosinolates concentration in plant leaves. M. persicae infestation increase amino acid:sugar ratio and activate plant defenses, but aphid performed better on pre-infested plants, suggesting that both nutrition and toxics should be considered in insect-plant interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764936PMC
http://dx.doi.org/10.1038/srep21954DOI Listing

Publication Analysis

Top Keywords

chinese cabbage
12
green peach
8
peach aphid
8
aphid myzus
8
myzus persicae
8
better pre-infested
8
pre-infested chinese
8
cabbage brassica
8
brassica pekinensis
8
performed better
8

Similar Publications

Enantioselection behaviors and risk assessments of chiral pesticide ethiprole and its chiral metabolite ethiprole amide in five kinds of vegetables.

Food Chem

January 2025

State Key Laboratory of Agricultural Products Safety/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China. Electronic address:

Ethiprole is a second-generation phenylpyrazole insecticide used in agricultural production as an alternative to fipronil due to its lower toxicity to bees. Ethiprole amide is chiral metabolite of ethiprole, but information regarding its formation and degradation in vegetables is limited. Here, the absolute configuration of ethiprole amide enantiomer was determined through circular dichroism, and the behaviors of chiral ethiprole and its metabolites in five kinds of vegetables were studied through field experiments.

View Article and Find Full Text PDF

Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.

View Article and Find Full Text PDF

The cabbage aphid, Brevicoryne brassicae, is a major pest on Brassicaceae plants, causing significant yield losses annually. However, the lack of genomic resources has hindered progress in understanding this pest at the molecular level. Here, we present a high-quality, chromosomal-level genome assembly for B.

View Article and Find Full Text PDF

Generation of novel bpm6 and dmr6 mutants with broad-spectrum resistance using a modified CRISPR/Cas9 system in Brassica oleracea.

J Integr Plant Biol

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Using an optimized CRISPR/Cas9 system to knock out the BTB-POZ and MATH domain gene BoBPM6 and the DOWNY MILDEW RESISTANCE 6 gene in Brassica oleracea resulted in new lines with broad-spectrum disease resistance.

View Article and Find Full Text PDF

Screening for broad-spectrum resistance to Turnip mosaic virus.

Breed Sci

September 2024

Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, Sendai, Miyagi 980-8572, Japan.

Turnip mosaic virus (TuMV) poses a major threat to crops like Chinese cabbage, causing significant economic losses. A viable and effective strategy to manage such diseases is by improvement of genetic-based viral resistance. To achieve this, it is important to have detailed and wide-ranging genetic resources, necessitating genetic exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!