Two new compounds, namely, a para-benzoquinone ring-containing abietane (1) and a para-benzoquinone ring-containing 7,8-seco-abietane (2), and 14 other known highly oxidized abietane diterpenoids (3-16) were isolated from an extract prepared from the cones of Taxodium distichum, collected in central Ohio. The active subfraction from which all compounds isolated in this study were purified was tested in vivo using Leishmania donovani-infected mice and was found to dose-dependently reduce the parasite burden in the murine livers after iv administration of this crude mixture at 5.6 and 11.1 mg/kg. The structures of 1 and 2 were established by detailed 1D- and 2D-NMR experiments, HRESIMS data, and electronic circular dichroism studies. Compounds 3 and 4 were each fully characterized spectroscopically and also isolated from a natural source for the first time. Compounds 2-16 were tested in vitro against L. donovani promastigotes and L. amazonensis intracellular amastigotes. Compound 2 was the most active against L. amazonensis amastigotes (IC50 = 1.4 μM), and 10 was the most potent against L. donovani promastigotes (IC50 = 1.6 μM). These compounds may be suggested for further studies such as in vivo experimentation either alone or in combination with other Taxodium isolates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831050PMC
http://dx.doi.org/10.1021/acs.jnatprod.5b01131DOI Listing

Publication Analysis

Top Keywords

highly oxidized
8
oxidized abietane
8
abietane diterpenoids
8
taxodium distichum
8
para-benzoquinone ring-containing
8
donovani promastigotes
8
ic50 μm
8
compounds
5
antileishmanial cytotoxic
4
cytotoxic activity
4

Similar Publications

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!