Background: Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder characterized by poorly reversible airway obstruction and its pathogenesis remains largely misunderstood. Local changes of regulatory T-cell populations in the lungs of COPD patients have been demonstrated although data concerning their pathologic role are contrasting. The aim of our study was to evaluate the relative percentage of regulatory T-cells in the peripheral blood of current and former smoker subjects, affected or not by COPD. Furthermore, the effect of different concentrations of budesonide and formoterol, on regulatory T-cells has been investigated.

Methods: T regulatory lymphocytes were isolated and assessed as CD4(+)CD25(high)CD127(-) cells by flow cytometry and cultured for 48 hours in the absence or in the presence of budesonide and/or formoterol at different doses.

Results: CD4(+)CD25(high)CD127(-) regulatory T-cells percentage was significantly reduced in COPD patients, both current and former smokers, with respect to volunteers. Furthermore, CD4(+)CD25(high)CD127(-) cells of COPD patients showed a not statistically significant response to drugs compared to healthy subjects.

Discussion: Our results evidenced a different behaviour of CD4(+)CD25(high)CD127(-) Treg cells in COPD patients after in vitro treatments.

Conclusions: Based on our data, we suggested a possible role of CD4 CD25(high)CD127 T-cells in COPD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751712PMC
http://dx.doi.org/10.1186/s40413-016-0095-2DOI Listing

Publication Analysis

Top Keywords

regulatory t-cells
16
copd patients
16
cd4+cd25highcd127- regulatory
8
copd
8
t-cells copd
8
cd4+cd25highcd127- cells
8
cells copd
8
cd4+cd25highcd127-
5
t-cells
5
regulatory
5

Similar Publications

Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy limited by graft-versus-host disease (GVHD). In preclinical studies and early-phase clinical studies enrichment of donor regulatory T cells (Tregs) appears to prevent GVHD and promote healthy immunity.We enrolled 44 patients on an open-label, single-center, phase 2 efficacy study investigating if a precision selected and highly purified Treg cell therapy manufactured from donor mobilized peripheral blood improves one-year GVHD-free relapse free survival (GRFS) after myeloablative conditioning (trial NCT01660607).

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.

View Article and Find Full Text PDF

Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.

Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors.

View Article and Find Full Text PDF

Immune Cells and Intracerebral Hemorrhage: A Causal Investigation Through Mendelian Randomization.

Brain Behav

January 2025

Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.

Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.

Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!