Cardiac sodium channel regulator MOG1 regulates cardiac morphogenesis and rhythm.

Sci Rep

Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.

Published: February 2016

MOG1 was initially identified as a protein that interacts with the small GTPase Ran involved in transport of macromolecules into and out of the nucleus. In addition, we have established that MOG1 interacts with the cardiac sodium channel Nav1.5 and regulates cell surface trafficking of Nav1.5. Here we used zebrafish as a model system to study the in vivo physiological role of MOG1. Knockdown of mog1 expression in zebrafish embryos significantly decreased the heart rate (HR). Consistently, the HR increases in embryos with over-expression of human MOG1. Compared with wild type MOG1 or control EGFP, mutant MOG1 with mutation E83D associated with Brugada syndrome significantly decreases the HR. Interestingly, knockdown of mog1 resulted in abnormal cardiac looping during embryogenesis. Mechanistically, knockdown of mog1 decreases expression of hcn4 involved in the regulation of the HR, and reduces expression of nkx2.5, gata4 and hand2 involved in cardiac morphogenesis. These data for the first time revealed a novel role that MOG1, a nucleocytoplasmic transport protein, plays in cardiac physiology and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763225PMC
http://dx.doi.org/10.1038/srep21538DOI Listing

Publication Analysis

Top Keywords

knockdown mog1
12
mog1
11
cardiac sodium
8
sodium channel
8
cardiac morphogenesis
8
role mog1
8
cardiac
6
channel regulator
4
regulator mog1
4
mog1 regulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!