Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings.

Phytochemistry

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina. Electronic address:

Published: May 2016

Fusarium verticillioides is a major maize pathogen and there are susceptible and resistant cultivars to this fungal infection. Recent studies suggest that its main mycotoxin fumonisin B1 (FB1) may be involved in phytopathogenicity, but the underlying mechanisms are mostly still unknown. This work was aimed at assessing whether FB1 disseminates inside the plants, as well as identifying possible correlations between the maize resistant/susceptible phenotype and the unbalances of the FB1-structurally-related sphingoid base sphinganine (Sa) and phytosphingosine (Pso) due to toxin accumulation. Resistant (RH) and susceptible hybrid (SH) maize seedlings grown from seeds inoculated with a FB1-producer F. verticillioides and from uninoculated ones irrigated with FB1 (20 ppm), were harvested at 7, 14 and 21 days after planting (dap), and the FB1, Sa and Pso levels were quantified in roots and aerial parts. The toxin was detected in roots and aerial parts for inoculated and FB1-irrigated plants of both hybrids. However, FB1 levels were overall higher in SH seedlings regardless of the treatment (infection or watering). Sa levels increased substantially in RH lines, peaking at 54-fold in infected roots at 14 dap. In contrast, the main change observed in SH seedlings was an increase of Pso in infected roots at 7 dap. Here, it was found that FB1 disseminates inside seedlings in the absence of FB1-producer fungal infections, perhaps indicating this might condition the fungus-plant interaction before the first contact. Furthermore, the results strongly suggest the existence of at least two ceramide synthase isoforms in maize with different substrate specificities, whose differential expression after FB1 exposure could be closely related to the susceptibility/resistance to F. verticillioides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2016.02.006DOI Listing

Publication Analysis

Top Keywords

sphingoid base
8
maize seedlings
8
fb1 disseminates
8
disseminates inside
8
dap fb1
8
roots aerial
8
aerial parts
8
infected roots
8
roots dap
8
fb1
7

Similar Publications

Sphingoid Base Diversity.

Atherosclerosis

December 2024

Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland. Electronic address:

Sphingolipids (SL) are crucial components of cellular membranes and play pivotal roles in various biological processes, including cell growth, differentiation, apoptosis, and stress responses. All SL contain a sphingoid base (SPB) backbone which is the shared and class-defining element. SPBs are heterogeneous in length and structure.

View Article and Find Full Text PDF

Biological Importance of Complex Sphingolipids and Their Structural Diversity in Budding Yeast .

Int J Mol Sci

November 2024

Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.

Complex sphingolipids are components of eukaryotic biomembranes and are involved in various physiological functions. In addition, their synthetic intermediates and metabolites, such as ceramide, sphingoid long-chain base, and sphingoid long-chain base 1-phosphate, play important roles as signaling molecules that regulate intracellular signal transduction systems. Complex sphingolipids have a large number of structural variations, and this structural diversity is considered an important molecular basis for their various physiological functions.

View Article and Find Full Text PDF

Engineering of Saccharomyces cerevisiae as a platform strain for microbial production of sphingosine-1-phosphate.

Microb Cell Fact

November 2024

Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea.

Background: Sphingosine-1-phosphate (S1P) is a multifunctional sphingolipid that has been implicated in regulating cellular activities in mammalian cells. Due to its therapeutic potential, there is a growing interest in developing efficient methods for S1P production. To date, the production of S1P has been achieved through chemical synthesis or blood extraction, but these processes have limitations such as complexity and cost.

View Article and Find Full Text PDF

Structure of the yeast ceramide synthase.

Nat Struct Mol Biol

November 2024

Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany.

Ceramides are essential lipids involved in forming complex sphingolipids and acting as signaling molecules. They result from the N-acylation of a sphingoid base and a CoA-activated fatty acid, a reaction catalyzed by the ceramide synthase (CerS) family of enzymes. Yet, the precise structural details and catalytic mechanisms of CerSs have remained elusive.

View Article and Find Full Text PDF

Structure Revision of Halisphingosine A via Total Synthesis and Bioactivity Studies.

Angew Chem Int Ed Engl

December 2024

Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany.

Sphingoid bases are important bioactive lipids found in a variety of organisms, serving as the backbone of sphingolipids, which regulate essential physiological processes. Here we describe the total synthesis and structure revision of halisphingosine A, a sphingoid base initially isolated from marine sponges. To address inconsistencies in the NMR interpretation of this natural product, we developed a synthetic route involving a late-stage enantioselective Henry reaction that allows access to multiple stereoisomers of the proposed halisphingosine A core structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!