A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

H18 Carbon: A New Metallic Phase with sp2-sp3 Hybridized Bonding Network. | LitMetric

H18 Carbon: A New Metallic Phase with sp2-sp3 Hybridized Bonding Network.

Sci Rep

International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Published: February 2016

Design and synthesis of three-dimensional metallic carbons are currently one of the hot issues in contemporary condensed matter physics because of their fascinating properties. Here, based on first-principles calculations, we discover a novel stable metallic carbon allotrope (termed H18 carbon) in () symmetry with a mixed sp(2)-sp(3) hybridized bonding network. The dynamical stability of H18 carbon is verified by phonon mode analysis and molecular dynamics simulations, and its mechanical stability is analyzed by elastic constants, bulk modulus, and shear modulus. By simulating the x-ray diffraction patterns, we propose that H18 carbon would be one of the unidentified carbon phases observed in recent detonation experiments. The analysis of the band structure and density of states reveal that this new carbon phase has a metallic feature mainly due to the C atoms with sp(2) hybridization. This novel 3D metallic carbon phase is anticipated to be useful for practical applications such as electronic and mechanical devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763233PMC
http://dx.doi.org/10.1038/srep21879DOI Listing

Publication Analysis

Top Keywords

h18 carbon
16
sp2-sp3 hybridized
8
hybridized bonding
8
bonding network
8
metallic carbon
8
carbon phase
8
carbon
7
metallic
5
h18
4
carbon metallic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!