A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conjectures regarding the nonlinear geometry of visual neurons. | LitMetric

Conjectures regarding the nonlinear geometry of visual neurons.

Vision Res

Department of Psychology, Cornell University, Ithaca, NY, USA. Electronic address:

Published: March 2016

From the earliest stages of sensory processing, neurons show inherent non-linearities: the response to a complex stimulus is not a sum of the responses to a set of constituent basis stimuli. These non-linearities come in a number of forms and have been explained in terms of a number of functional goals. The family of spatial non-linearities have included interactions that occur both within and outside of the classical receptive field. They include, saturation, cross orientation inhibition, contrast normalization, end-stopping and a variety of non-classical effects. In addition, neurons show a number of facilitatory and invariance related effects such as those exhibited by complex cells (integration across position). Here, we describe an approach that attempts to explain many of the non-linearities under a single geometric framework. In line with Zetzsche and colleagues (e.g., Zetzsche et al., 1999) we propose that many of the principal non-linearities can be described by a geometry where the neural response space has a simple curvature. In this paper, we focus on the geometry that produces both increased selectivity (curving outward) and increased tolerance (curving inward). We demonstrate that overcomplete sparse coding with both low-dimensional synthetic data and high-dimensional natural scene data can result in curvature that is responsible for a variety of different known non-classical effects including end-stopping and gain control. We believe that this approach provides a more fundamental explanation of these non-linearities and does not require that one postulate a variety of explanations (e.g., that gain must be controlled or the ends of lines must be detected). In its standard form, sparse coding does not however, produce invariance/tolerance represented by inward curvature. We speculate on some of the requirements needed to produce such curvature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2015.10.015DOI Listing

Publication Analysis

Top Keywords

variety non-classical
8
non-classical effects
8
sparse coding
8
non-linearities
6
conjectures nonlinear
4
nonlinear geometry
4
geometry visual
4
visual neurons
4
neurons earliest
4
earliest stages
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!