Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles.

Int J Pharm

Kala Pharmaceuticals, Inc., 100 Beaver Street, Suite 201, Waltham, MA 02453, USA, USA.

Published: April 2016

Most attempts to achieve sustained drug delivery to pulmonary tissues using nanoparticles have focused on mucoadhesive particles (MAP). However, MAP become trapped in the luminal mucus layer and, as a result, are largely eliminated from the respiratory tract by mucociliary escalator and expiratory clearance, which undermines their sustained release potential. Recent studies have shown that mucus-penetrating particles (MPP) engineered to diffuse through mucus can avoid rapid mucociliary clearance in vivo and persist in the lung longer. Nonetheless, it has not been confirmed that MPP encapsulating small molecules can sustain drug release in the lung longer than MAP of similar size and core composition. As a proof of concept, we encapsulated fluticasone propionate (FP) into poly(lactide)-based MPP and MAP (both ∼ 200 nm diameter, ∼ 30-35% drug loading) and evaluated their pulmonary residence by measuring FP levels in mouse lungs over 24h following intratracheal instillation. Furthermore, we evaluated the duration of action of FP MPP in a rat lung inflammation model compared to that of a non-encapsulated FP control. In rodents, pulmonary delivery of FP formulated as MPP provided a 60% higher local exposure compared to MAP and extended the single dose efficacy by at least 16 h compared to non-encapsulated FP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.02.031DOI Listing

Publication Analysis

Top Keywords

pulmonary delivery
8
fluticasone propionate
8
lung longer
8
compared non-encapsulated
8
map
5
mpp
5
enhanced pulmonary
4
delivery fluticasone
4
propionate rodents
4
rodents mucus-penetrating
4

Similar Publications

ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis.

Int Immunopharmacol

December 2024

Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. Electronic address:

Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.

View Article and Find Full Text PDF

Polymer-siRNA nanovectors for treating lung inflammation.

J Control Release

December 2024

Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Electronic address:

Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!