Bakuchiol augments MyoD activation leading to enhanced myoblast differentiation.

Chem Biol Interact

Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea. Electronic address:

Published: March 2016

Myoblast differentiation is fundamental to skeletal muscle development and regeneration after injury and defects in this process are implicated in muscle atrophy associated with aging or pathological conditions. MyoD family transcription factors function as mater regulators in induction of muscle-specific genes during myoblast differentiation. We have identified bakuchiol, a prenylated phenolic monoterpene, as an inducer of MyoD-mediated transcription and myogenic differentiation. C2C12 myoblasts treated with bakuchiol exhibit enhanced muscle-specific gene expression and myotube formation. A key promyogenic kinase p38MAPK is activated dramatically by bakuchiol which in turn induced the formation of MyoD/E protein active transcription complexes. Consistently, the recruitment of MyoD and Baf60c to the Myogenin promoter is enhanced in bakuchiol-treated myoblasts. Furthermore, bakuchiol rescues defective p38MAPK activation and myogenic differentiation caused by Cdo-depletion or in RD rhabdomyosarcoma cells. Taken together, these results indicate that bakuchiol enhances myogenic differentiation through p38MAPK and MyoD activation. Thus bakuchiol can be developed into a potential agent to improve muscular regeneration and repair to treat muscular atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2016.02.008DOI Listing

Publication Analysis

Top Keywords

myoblast differentiation
12
myogenic differentiation
12
myod activation
8
bakuchiol
7
differentiation
6
bakuchiol augments
4
myod
4
augments myod
4
activation leading
4
leading enhanced
4

Similar Publications

Excessive BMP3b suppresses skeletal muscle differentiation.

Biochem Biophys Res Commun

December 2024

Molecular Signaling and Biochemistry, Kyushu Dental University, Kokurakitaku, Kitakyushu, Fukuoka, Japan.

Bone morphogenetic protein (BMP)-3b, also known as growth differentiation factor (GDF)-10, belongs to the transforming growth factor (TGF)-β superfamily. Despite being named a BMP, BMP3b is considered as an intermediate between the TGFβ/activin/myostatin and BMP/GDF subgroups of the TGFβ superfamily. Myoblast differentiation is tightly regulated by various cytokines, including the TGFβ superfamily members.

View Article and Find Full Text PDF

Skeletal muscle has an important role in whole body energy metabolism and various proteases are involved in skeletal muscle functions. We have previously identified the cysteine protease legumain in cultured human skeletal muscle cells. However, the potential role of legumain in regulation of energy metabolism remains unexplored.

View Article and Find Full Text PDF

The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages.

View Article and Find Full Text PDF

Succinate Regulates Exercise-Induced Muscle Remodelling by Boosting Satellite Cell Differentiation Through Succinate Receptor 1.

J Cachexia Sarcopenia Muscle

February 2025

Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!