Functional metagenomics of extreme environments.

Curr Opin Biotechnol

Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain. Electronic address:

Published: April 2016

The bioprospecting of enzymes that operate under extreme conditions is of particular interest for many biotechnological and industrial processes. Nevertheless, there is a considerable limitation to retrieve novel enzymes as only a small fraction of microorganisms derived from extreme environments can be cultured under standard laboratory conditions. Functional metagenomics has the advantage of not requiring the cultivation of microorganisms or previous sequence information to known genes, thus representing a valuable approach for mining enzymes with new features. In this review, we summarize studies showing how functional metagenomics was employed to retrieve genes encoding for proteins involved not only in molecular adaptation and resistance to extreme environmental conditions but also in other enzymatic activities of biotechnological interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2016.01.017DOI Listing

Publication Analysis

Top Keywords

functional metagenomics
12
extreme environments
8
extreme
4
metagenomics extreme
4
environments bioprospecting
4
bioprospecting enzymes
4
enzymes operate
4
operate extreme
4
extreme conditions
4
conditions interest
4

Similar Publications

Colorectal cancer (CRC) is a common cancer accompanied by microbiome dysbiosis. Exploration of probiotics against oncogenic microorganisms is promising for CRC treatment. Here, differential microorganisms between CRC and healthy control were analyzed.

View Article and Find Full Text PDF

Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.

View Article and Find Full Text PDF

Decrypting the phylogeny and metabolism of microbial dark matter in green and red Antarctic snow.

ISME Commun

January 2025

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.

View Article and Find Full Text PDF

Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO-rich geyser.

ISME Commun

January 2024

Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Place, Thomas Hall, Raleigh, NC 27607, United States.

Microbially induced carbonate precipitation (MICP) is a natural process with potential biotechnological applications to address both carbon sequestration and sustainable construction needs. However, our understanding of the microbial processes involved in MICP is limited to a few well-researched pathways such as ureolytic hydrolysis. To expand our knowledge of MICP, we conducted an omics-based study on sedimentary communities from travertine around the CO-driven Crystal Geyser near Green River, Utah.

View Article and Find Full Text PDF

Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal-spatial dataset, from a subtropical hypereutrophic estuary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!