Isothermal titration calorimetry (ITC) is shown to be a sensitive reporter of bile salt micellization and chiral recognition. Detailed ITC characterization of bile micelle formation as well as the chiral recognition capabilities of sodium cholate (NaC), deoxycholate (NaDC), and taurodeoxycholate (NaTDC) micelle systems are reported. The ΔH(demic) of these bile salt micelle systems is directly observable and is strongly temperature-dependent, allowing also for the determination of ΔCp(demic). Using the pseudo-phase separation model, ΔG(demic) and TΔS(demic) were also calculated. Chirally selective guest-host binding of model racemic compounds 1,1'-bi-2-napthol (BN) and 1,1'-binaphthyl-2,2'-diylhydrogenphosphate (BNDHP) to bile salt micelles was then investigated. The S-isomer was shown to bind more tightly to the bile salt micelles in all cases. A model was developed that allows for the quantitative determination of the enthalpic difference in binding affinity that corresponds to chiral selectivity, which is on the order of 1 kJ mol(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.22580DOI Listing

Publication Analysis

Top Keywords

bile salt
20
chiral recognition
12
salt micelles
12
micelle systems
8
bile
6
salt
5
direct measurement
4
measurement thermodynamics
4
chiral
4
thermodynamics chiral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!