A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells. | LitMetric

Purpose: The specialized corneal epithelium requires differentiated properties, specific for its role at the anterior surface of the eye. Thus, tight maintenance of the differentiated qualities of the corneal epithelial is essential. Pinin (PNN) is an exon junction component (EJC) that has dramatic implications for corneal epithelial cell differentiation and may act as a stabilizer of the corneal epithelial cell phenotype. Our studies revealed that PNN is involved in transcriptional repression complexes and spliceosomal complexes, placing PNN at the fulcrum between chromatin and mRNA splicing. Transcriptome analysis of PNN-knockdown cells revealed clear and reproducible alterations in transcript profiles and splicing patterns of a subset of genes that would significantly impact the epithelial cell phenotype. We further investigated PNN's role in the regulation of gene expression and alternative splicing (AS) in a corneal epithelial context.

Methods: Human corneal epithelial (HCET) cells that carry the doxycycline-inducible PNN-knockdown shRNA vector were used to perform RNA-seq to determine differential gene expression and differential AS events.

Results: Multiple genes and AS events were identified as differentially expressed between PNN-knockdown and control cells. Genes upregulated by PNN knockdown included a large proportion of genes that are associated with enhanced cell migration and ECM remodeling processes, such as MMPs, ADAMs, HAS2, LAMA3, CXCRs, and UNC5C. Genes downregulated in response to PNN depletion included IGFBP5, FGD3, FGFR2, PAX6, RARG, and SOX10. AS events in PNN-knockdown cells compared to control cells were also more likely to be detected, and upregulated. In particular, 60% of exon-skipping events, detected in only one condition, were detected in PNN-knockdown cells and of the shared exon-skipping events, 92% of those differentially expressed were more frequent in the PNN knockdown.

Conclusions: These data suggest that lowering of PNN levels in epithelial cells results in dramatic transformation in the number and composition of splicing variants and that PNN plays a crucial role in the selection of which RNA isoforms differentiating cells produce. Many of the genes affected by PNN knockdown are known to affect the epithelial phenotype. This window into the complexity of RNA splicing in the corneal epithelium implies that PNN exerts broad influence over the regulation and maintenance of the epithelial cell phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734150PMC

Publication Analysis

Top Keywords

corneal epithelial
24
epithelial cell
16
gene expression
12
splicing corneal
12
cell phenotype
12
pnn-knockdown cells
12
pnn
11
epithelial
10
cells
9
expression alternative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!