Purpose: The study of axial loading is essential to determine the properties of intervertebral disc. The objectives of this work are (1) to quantify the mechanical properties of porcine lumbar intervertebral discs under static and cyclic compressive loading, and (2) to determine the parameters of a five-parameter rheological model for porcine and compare them with those obtained for human lumbar intervertebral discs.
Methods: Thus, the porcine lumbar motion segments were subjected to quasi-static and dynamic compression tests. The quasi-static tests were used to obtain the static stiffness coefficient at different strain rates, while the data from the cyclic compressive tests were used to both determine the dynamic stiffness coefficient and to be fitted in a 5-parameter model, in order to simulate the creep response of the porcine intervertebral discs.
Results: The results demonstrated that dynamic stiffness coefficient of porcine discs is between four and ten times higher than the static stiffness coefficient, depending on load applied. The parameters of the rheological model suggested a low permeability of nucleus and endplate during the fast response of porcine discs. In addition, the fast response in terms of displacement is four times higher than those documented for human discs.
Conclusions: This study revealed that care must be taken on the comparison between porcine and human discs, since they present different behaviour under quasi-static and dynamic compressive loading.
Download full-text PDF |
Source |
---|
Alzheimers Dement
December 2024
Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Cerebral arterial dilatation, signifying outward vascular remodeling, is linked to a higher risk of Alzheimer's disease and a higher burden of white matter hyperintensities (WMH). Arterial dilatation may disrupt cerebral hemodynamics and lead to delayed blood arrival to the brain, which is itself linked to an increased burden of WMH. We examined if arterial dilatation was associated with blood arrival timing and if blood arrival timing mediated the effect of arterial dilatation on WMH burden.
View Article and Find Full Text PDFJ Magn Reson Imaging
February 2025
BioMedical Engineering and Imaging Institute, Icahn School of Medicine Mount Sinai, New York, New York, USA.
Background: Several factors can impair image quality and reliability of liver magnetic resonance elastography (MRE), such as inadequate driver positioning, insufficient wave propagation and patient-related factors.
Purpose: To report initial results on automatic classification of liver MRE image quality using various deep learning (DL) architectures.
Study Type: Retrospective, single center, IRB-approved human study.
J R Soc Interface
January 2025
Department of Mechanical Engineering, Imperial College London, London, UK.
Following lower limb amputation residuum skin from the lower leg is used to reconstruct the residual limb. Unlike skin on the sole of the foot (plantar skin), leg skin is not inherently load bearing. Despite this, leg skin is required to be load bearing in the prosthetic socket.
View Article and Find Full Text PDFNutrients
December 2024
Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany.
Background: The Geriatric Nutritional Risk Index (GNRI) has shown promising potential for identifying individuals at risk for osteoporosis in various patient cohorts. However, data from the general population confirming or refuting the usefulness of the GNRI as a risk factor for osteoporosis are sparse. We therefore aimed to clarify whether the GNRI is associated with the ultrasound-based bone stiffness index and the osteoporotic fracture risk in a sample of elderly men and women from the general population.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.
: Spinal flexibility radiographs are important in adolescent idiopathic scoliosis (AIS) for clinical decision-making. In this study, we introduce a new method, the 'quantitatively controlled standing fulcrum side-bending' test (CSFS test). This is a feasibility study; we aimed to quantify the applied force and track the temporospatial changes in the spine specifically by measuring the continuous change in the Cobb angle (in degrees) during lateral bending.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!