Tailoring electromagnetically induced transparency with two different coupling mechanisms has been numerically demonstrated. The results show that EIT based on simultaneous electric resonance and magnetic resonance has relatively larger coupling distance compared with that based on electric resonance near field coupling to magnetic resonance. The relatively large coupling distance is due to the relatively small susceptibility change. For EIT based on simultaneous electric resonance and magnetic resonance, not only incident electric field but also the incident magnetic field pays a role on the susceptibility of system. The influence of the incident magnetic field leads to relatively smaller susceptibility change compared with that based on electric resonance near field coupling to magnetic resonance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761887 | PMC |
http://dx.doi.org/10.1038/srep21457 | DOI Listing |
Exp Brain Res
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.
View Article and Find Full Text PDFSci Rep
January 2025
DeepClue Inc., Deajeon, Republic of Korea.
To validate the clinical feasibility of deep learning-driven magnetic resonance angiography (DL-driven MRA) collateral map in acute ischemic stroke. We employed a 3D multitask regression and ordinal regression deep neural network, called as 3D-MROD-Net, to generate DL-driven MRA collateral maps. Two raters graded the collateral perfusion scores of both conventional and DL-driven MRA collateral maps and measured the grading time.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Shiraz university of technology, Shiraz, Iran.
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!