Carriage of beta-lactamase-producing Enterobacteriaceae among nursing home residents in north Lebanon.

Int J Infect Dis

Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, PO Box 33, Amioun, Beirut, Lebanon. Electronic address:

Published: April 2016

Background: Multidrug-resistant (MDR) Enterobacteriaceae can cause severe infections with high morbidity, mortality, and health care costs. Individuals can be fecal carriers of these resistant organisms. Data on the extent of MDR Enterobacteriaceae fecal carriage in the community setting in Lebanon are very scarce. The aim of this study was to investigate the fecal carriage of MDR Enterobacteriaceae among the elderly residents of two nursing homes located in north Lebanon.

Methods: Over a period of 4 months, five fecal swab samples were collected from each of 68 elderly persons at regular intervals of 3-4 weeks. Fecal swabs were subcultured on selective media for the screening of resistant organisms. The phenotypic detection of extended-spectrum beta-lactamase (ESBL), AmpC, metallo-beta-lactamase (MBL), and Klebsiella pneumoniae carbapenemase (KPC) production was performed using the beta-lactamase inhibitors ethylenediaminetetraacetic acid, phenylboronic acid, and cloxacillin. A temocillin disk was used for OXA-48. Multiplex PCRs were used for the genotypic detection of ESBL and carbapenemase genes, and sequencing was performed to identify CTX-M-15. The medical records of each subject were reviewed on a regular basis in order to assess the risk factors associated with MDR Enterobacteriaceae fecal carriage.

Results: Over the study period, 76.5% of the recruited elderly persons were at least one-time carriers. A total of 178 isolates were obtained. Phenotypic testing revealed that 91.5% of them were ESBL producers, 4% were AmpC producers, 2.8% were co-producers of ESBL and AmpC, and 1.7% were co-producers of OXA-48 and ESBL. Recent antibiotic intake was found to be the only independent risk factor associated with the fecal carriage of MDR Enterobacteriaceae.

Conclusions: The high prevalence of MDR Enterobacteriaceae detected in this study and the emergence of carbapenem resistance is alarming. Efficient infection control measures and antibiotic stewardship programs are urgently needed in these settings in order to limit the spread of resistant strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijid.2016.02.007DOI Listing

Publication Analysis

Top Keywords

mdr enterobacteriaceae
20
fecal carriage
12
resistant organisms
8
enterobacteriaceae fecal
8
carriage mdr
8
elderly persons
8
esbl ampc
8
fecal
7
enterobacteriaceae
6
mdr
6

Similar Publications

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Enterobacter asburiae (E. asburiae) is a gram-negative rod-shaped bacterium which has emerging significance as an opportunistic pathogen having high virulence pattern and drug resistant properties. In this study, we present the detailed analysis of the whole genome sequence of a multidrug-resistant (MDR) E.

View Article and Find Full Text PDF
Article Synopsis
  • Conjugative plasmids like pOXA-48 contribute to the spread and evolution of antimicrobial resistance in bacteria, but can also cause fitness costs to their host.
  • Using transcriptomics, researchers found that the acquisition of pOXA-48 by multidrug-resistant enterobacteria leads to both unique and shared changes in gene expression, particularly affecting a chromosomal operon in certain bacteria.
  • This crosstalk is mediated by a LysR regulator encoded by the plasmid, which enhances the fitness of K. pneumoniae with pOXA-48, indicating that this mechanism may aid in the spread of carbapenem resistance in clinical environments.
View Article and Find Full Text PDF

Detection and Molecular Characterization of from Wastewater Environments in Two University Campuses in Nigeria.

Front Biosci (Elite Ed)

December 2024

Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, 4000 Durban, South Africa.

Background: () is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.

Methods: This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for and its antimicrobial resistance genes (). Oxoid Chromogenic UTI agar was used to isolate uropathogenic (UPEC), identified using standard biochemical tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!