Macrophages can be reprogramming, such as the classical activated macrophage, M1 or alternative activated macrophages, M2 phenotype following the milieu danger signals, especially inflammatory factors. Macrophage reprogramming is now considered as a key determinant of disease development and/or regression. Experimental autoimmune myocarditis (EAM) is characterized by monocytes/macrophage infiltration, Th17 cells activation and inflammatory factors producing such as high mobility group box 1 (HMGB1). Whether infiltrated macrophages could be reprogramming in EAM? HMGB1 was associated with macrophage reprogramming? Our results clearly demonstrated that infiltrated macrophage was reprogrammed towards a proinflammatory M1-like phenotype and cardiac protection by monocytes/macrophages depletion or HMGB1 blockade in EAM; in vitro, HMGB1 facilitated macrophage reprogramming towards M1-like phenotype dependent on TLR4-PI3Kγ-Erk1/2 pathway; furthermore, the reprogramming M1-like macrophage promoted Th17 expansion. Therefore, we speculated that HMGB1 contributed EAM development via facilitating macrophage reprogramming towards M1-like phenotype except for directly modulating Th17 cells expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761996 | PMC |
http://dx.doi.org/10.1038/srep21884 | DOI Listing |
Sci Rep
January 2025
Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.
Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Macau, Institute of Chinese Medical Sciences, Avenida da Universidade, N22, Taipa, CHINA.
Engineered immune cell therapy has proven to be a transformative cancer treatment despite the challenges of its prohibitive costs and manufacturing complexity. In this study, we propose a concise "lipid droplet fusion" strategy for engineering macrophages. Because of the integration of hydrophobic alkyl chains and π-conjugated structures, the mildly synthesized sp2C-conjugated covalent organic framework (COF) UM-101 induced lipid droplet fusion and metabolic reprogramming of macrophages, thus promoting their antitumor classical activation.
View Article and Find Full Text PDFBiomaterials
January 2025
School of Life Science, Chongqing University, Chongqing, 400044, China. Electronic address:
In-situ tumor vaccination remains challenging due to difficulties in the exposure and presentation of tumor-associated neoantigens (TANs). In view of the central role of lipid metabolism in cell fate determination and tumor-immune cell communication, here we report a photo-controlled lipid metabolism nanoregulator (PLMN) to achieve robust in-situ adjuvant-free vaccination, which is constructed through hierarchically integrating photothermal-inducible arachidonate 15-lipoxygenase (ALOX15)-expressing plasmids, cypate and FIN56 into cationic liposomes. Near-infrared light (NIR) stimulation triggers on-demand ALOX15 editing and causes excessive accumulation of downstream pro-ferroptosis lipid metabolites.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
Arthritis Rheumatol
January 2025
Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA.
Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with auto-destructive immunity in affected patients, including the process of immune aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!