Seed dispersal may involve different vectors of dispersal in two or more sequential phases (i.e., diplochory). However, contributions of each phase to the overall seed dispersal effectiveness (SDE) are poorly understood and hard to evaluate due to post-dispersal processes that affect seed and seedling survival. We investigated the simultaneous bird (phase 1, in plant canopy) and ant (phase 2, on the floor) contributions to SDE with the ornithochoric shrub Erythroxylum ambiguum in a Brazilian Atlantic forest. Twelve species of birds fed on fruit and dispersed approximately 26 % of the seed crop. The remaining seed crop, 90 % of which contained viable seeds, fell to the ground beneath the parental plant. Ants either cleaned seeds in fruits or carried fallen fruit and seeds from bird feces to their nests. Although E. ambiguum has no adaptation for ant dispersal, ants were as quantitatively important as birds. Birds and ants equally increased germination rates compared to controls. However, birds deposited seeds farther from the parent, where seedling survival was higher (78 %) than it was beneath the parent (44 %), whereas ants carried seeds to their nests, where seedling survival was higher (83 %) than in controls away from their nests (63 %). Diplochory allowed a 42 % increase in SDE compared to dispersal in phase 1 alone. High lipid content in the fruit pulp of E. ambiguum may facilitate the inclusion of ants in a second step of dispersal after diaspores reach the floor. Ants can also buffer the dispersal of diplochorous plants against decreases in phase 1 dispersers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-016-3571-z | DOI Listing |
Evodevo
December 2024
Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Science and Engineering of Ecology in Arid and Semi-arid Areas, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China.
Urbanization greatly impacts both the diversity of soil seed banks and the spatial dynamics of species. These seed banks serve as a window into the ecological history and potential for recovery in urban wastelands, which are continually evolving due to urbanization. In this study, we selected 24 plots along urban-rural gradients in Shanghai, China.
View Article and Find Full Text PDFAnn Bot
December 2024
Department of Biology, Queen's University, Kingston, Ontario, K7L3N6, Canada.
Background And Aims: Seed dispersal impacts plant fitness by shaping the habitat and distribution of offspring, influencing population dynamics and spatial genetic diversity. Whether the evolution of dispersal strategies varies across herbaceous life forms (annual, perennial, clonal) is inconclusive. This study examines how seed dispersal strategies vary between annual and perennial populations of Mimulus guttatus (syn.
View Article and Find Full Text PDFEvol Appl
December 2024
Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles California USA.
Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. , or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
Kiel University, Department of Functional Morphology and Biomechanics, Am Botanischen Garten 9, D-24098 Kiel, Germany.
The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels. Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!