Two bacterial strains, YHK0403(T) and YHK0508, isolated from soil under a corroded gas pipe line, were revealed as Gram-negative, obligately anaerobic, spore-forming and mesophilic bacteria. The cells were rod-shaped and motile by means of peritrichous flagella. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were members of the genus Clostridium and were the most closely related to Clostridium scatologenes KCTC 5588(T) (95.8% sequence similarity), followed by Clostridium magnum KCTC 15177(T) (95.8%), Clostridium drakei KCTC 5440(T) (95.7%) and Clostridium tyrobutyricum KCTC 5387(T) (94.9%). The G + C contents of the isolates were 29.6 mol%. Peptidoglycan in the cell wall was of the A1γ type with meso-diaminopimelic acid. The major polar lipid was diphosphatidylglycerol (DPG), and other minor lipids were revealed as phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two unknown glycolipids (GL1 and GL2), an unknown aminoglycolipid (NGL), two unknown aminophospholipids (PN1 and PN2) and four unknown phospholipids (PL1 to PL4). Predominant fatty acids were C16:0 and C16:1cis9 DMA. The major end products from glucose fermentation were identified as butyrate (12.2 mmol) and acetate (9.8 mmol). Collectively, the results from a wide range of phenotypic tests, chemotaxonomic tests, and phylogenetic analysis indicated that the two isolates represent novel species of the genus Clostridium, for which the name Clostridium kogasensis sp. nov. (type strain, YHK0403(T) = KCTC 15258(T) = JCM 18719(T)) is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2016.02.006DOI Listing

Publication Analysis

Top Keywords

genus clostridium
12
clostridium
9
clostridium kogasensis
8
kogasensis nov
8
isolated soil
8
soil corroded
8
corroded gas
8
phylogenetic analysis
8
indicated isolates
8
nov novel
4

Similar Publications

: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. : Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD.

View Article and Find Full Text PDF

Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.

View Article and Find Full Text PDF

IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN.

View Article and Find Full Text PDF

The rumen microbiota plays a vital role in the nutrient metabolism affecting the growth of velvet antler. However, the fermentation patterns and dynamics of the rumen microbiota across growth stages of velvet antler remain largely unexplored. Here, we employed an fermentation approach to assess fermentation parameters and microbial composition in the rumen liquid of sika deer during the early growth (EG), metaphase growth (MG), and fast growth (FG) phases .

View Article and Find Full Text PDF

Characterization of the oxygen-tolerant formate dehydrogenase from .

Front Microbiol

January 2025

Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany.

Fixation of CO into the organic compound formate by formate dehydrogenases (FDHs) is regarded as the oldest autotrophic process on Earth. It has been proposed that an FDH-dependent CO fixation module could support CO assimilation even in photoautotrophic organisms. In the present study, we characterized FDH from (FDH) due to its ability to reduce CO under aerobic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!