A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Target effect on the kinematics of Taekwondo Roundhouse Kick - is the presence of a physical target a stimulus, influencing muscle-power generation? | LitMetric

Taekwondo is famous for its powerful kicking techniques and the roundhouse kick is the most frequently used one. In earlier literature, the influence of a physical target (exiting or not) on kicking power generation has not been given much attention. Therefore, the aim of this study was to investigate the kinematics of roundhouse kick execution and its factors related to power generation. 6 ITF taekwondo practitioners voluntarily participated in this study. They were asked to perform kicks with and without a physical target. The first kick aimed at breaking a board while the second one was a kick into the air. A Smart-D motion capture system (BTS S.p.A., Italy) was used to quantitatively determine their kinematic characteristics during each kick. The main findings showed that kicks aiming at a breaking board were significantly slower than kicks without a physical target (maximal kick-foot velocities were 10.61 ± 0.86 m/s and 14.61 ± 0.67 m/s, respectively, p < 0.01), but the kicking time of the former was shorter (0.58 ± 0.01 s and 0.67 ± 0.01, respectively, p < 0.01). The results suggest that a physical target will negatively influence the kick-foot velocity, which is not necessarily a disadvantage for creating a high quality kick. Possible motor control mechanisms are discussed for the phenomenon. The study made it clear: trainings with and without physical targets would develop different motor control patterns. More studies are needed for identifying the effectiveness of different controls and efficiencies of their training.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physical target
20
roundhouse kick
12
power generation
8
kicks physical
8
breaking board
8
motor control
8
kick
7
target
6
physical
6
target kinematics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!