Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.

Free Radic Biol Med

Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden. Electronic address:

Published: May 2016

The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide. The activity also utilizes the FAD and the N-terminal redox active disulfide/dithiol motif of TrxR1. If a sole Cys residue at the C-terminal tail of TrxR1, in the absence of Sec, was moved further towards the C-terminal end of the protein compared to its natural position at residue 497, juglone reduction was, surprisingly, further increased. Ala substitutions of Trp407, Asn418 and Asn419 in a previously described "guiding bar", thought to mediate interactions of the C-terminal tail of TrxR1 with the FAD/dithiol site at the N-terminal domain of the other subunit in the dimeric enzyme, lowered turnover with juglone about 4.5-fold. Four residues of Sec-deficient TrxR1 were found to be easily arylated by juglone, including the Cys residue at position 497. Based upon our observations we suggest a model for involvement of the juglone-arylated C-terminal motif of TrxR1 to explain its high activity with juglone. This study thus provides novel insights into the catalytic mechanisms of TrxR1. One-electron juglone reduction by TrxR1 producing superoxide should furthermore contribute to the well-known prooxidant cytotoxicity of juglone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2016.02.013DOI Listing

Publication Analysis

Top Keywords

trxr1
12
cys residue
12
c-terminal tail
12
tail trxr1
12
thioredoxin reductase
8
sole cys
8
residue c-terminal
8
producing superoxide
8
motif trxr1
8
juglone reduction
8

Similar Publications

Re-Sensitization of Resistant Ovarian Cancer SKOV3/CDDP Cells to Cisplatin by Curcumin Pre-Treatment.

Int J Mol Sci

January 2025

Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia.

A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (), has achieved previously significant anti-cancer effects against human ovarian adenocarcinoma SKOV-3/CDDP cisplatin-resistant cells by inhibition the gene expression of the antioxidant enzymes (, , , and ), transcription factor and signaling pathway (//).

View Article and Find Full Text PDF

Background: Oxidative damage has been implicated in multiple neurodegenerative diseases, including epilepsy. Selenium, in the form of selenoproteins is an integral part of the human antioxidant defense system. Though a relationship between the altered selenium levels and epilepsy has been reported, limited evidence is available about the expression pattern of selenoproteins in epileptic patients.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Sulforaphane potentiates the efficacy of chemoradiotherapy in glioblastoma by selectively targeting thioredoxin reductase 1.

Cancer Lett

December 2024

Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China. Electronic address:

Chemoradiotherapy is a conventional treatment modality for patients with glioblastoma (GBM). However, the efficacy of this approach is significantly hindered by the development of therapeutic resistance. The thioredoxin system, which plays a crucial role in maintaining redox homeostasis, confers protection to cancer cells against apoptosis induced by chemoradiotherapy.

View Article and Find Full Text PDF

Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!