Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles.

Langmuir

Institut des Sciences Moléculaires d'Orsay, UMR 8214 CNRS-Université Paris-Sud, Université Paris-Sud, Bât. 351, 91405 Orsay Cedex, France.

Published: March 2016

Using the time-dependent density functional theory, we perform quantum calculations of the electron dynamics in small charged metallic nanoparticles (clusters) of spherical geometry. We show that the excess charge is accumulated at the surface of the nanoparticle within a narrow layer given by the typical screening distance of the electronic system. As a consequence, for nanoparticles in vacuum, the dipolar plasmon mode displays only a small frequency shift upon charging. We obtain a blue shift for positively charged clusters and a red shift for negatively charged clusters, consistent with the change of the electron spill-out from the nanoparticle boundaries. For negatively charged clusters, the Fermi level is eventually promoted above the vacuum level leading to the decay of the excess charge via resonant electron transfer into the continuum. We show that, depending on the charge, the process of electron loss can be very fast, on the femtosecond time scale. Our results are of great relevance to correctly interpret the optical response of the nanoparticles obtained in electrochemistry, and demonstrate that the measured shift of the plasmon resonances upon charging of nanoparticles cannot be explained without account for the surface chemistry and the dielectric environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b00112DOI Listing

Publication Analysis

Top Keywords

charged clusters
12
electron dynamics
8
charged metallic
8
metallic nanoparticles
8
excess charge
8
negatively charged
8
electron
5
charged
5
nanoparticles
5
plasmon response
4

Similar Publications

Expanding the spectral response of photocatalysts to facilitate overall water splitting (OWS) represents an effective approach for improving solar spectrum utilization efficiency. However, the majority of single-phase photocatalysts designed for OWS primarily respond to the ultraviolet region, which accounts for a small proportion of sunlight. Herein, we present a versatile strategy to achieve broad visible-light-responsive OWS photocatalysis dominated by direct ligand-to-cluster charge transfer (LCCT) within metal-organic frameworks (MOFs).

View Article and Find Full Text PDF

High-Coordination and Nb-Bridging of Bimetallic Amorphous P-Nb-W-P Clusters in Carbon Nanospheres for High-Performance Sodium-Ion Hybrid Capacitors.

Adv Sci (Weinh)

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.

Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).

View Article and Find Full Text PDF

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.

View Article and Find Full Text PDF

Highly Accessible Electrocatalyst with Formed Copper-Cluster Active Sites for Enhanced Nitrate-to-Ammonia Conversion.

ACS Nano

January 2025

Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!