A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Type II PKAs are anchored to mature insulin secretory granules in INS-1 β-cells and required for cAMP-dependent potentiation of exocytosis. | LitMetric

Specificity of the cAMP-dependent protein kinase (PKA) pathway relies on an extremely sophisticated compartmentalization mechanism of the kinase within a given cell, based on high-affinity binding of PKA tetramer pools to different A-Kinase Anchoring Proteins (AKAPs). We and others have previously shown that AKAPs-dependent PKA subcellular targeting is a requisite for optimal cAMP-dependent potentiation of insulin exocytosis. We thus hypothesized that a PKA pool may directly anchor to the secretory compartment to potentiate insulin exocytosis. Here, using immunofluorescence analyses combined to subcellular fractionations and purification of insulin secretory granules (ISGs), we identified discrete subpools of type II PKAs, RIIα and RIIβ PKAs, along with the catalytic subunit, physically associated with ISGs within pancreatic insulin-secreting β-cells. Ultrastructural analysis of native rodent β-cells confirmed in vivo the occurrence of PKA on dense-core ISGs. Isoform-selective disruption of binding of PKAs to AKAPs reinforced the requirement of type II PKA isoforms for cAMP potentiation of insulin exocytosis. This granular localization of PKA was of critical importance since siRNA-mediated depletion of either RIIα or RIIβ PKAs resulted in a significant reduction of cAMP-dependent potentiation of insulin release. The present work provides evidence for a previously unrecognized pool of type II PKAs physically anchored to the β-cell ISGs compartment and supports a non-redundant function for type II PKAs during cAMP potentiation of exocytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2016.02.008DOI Listing

Publication Analysis

Top Keywords

type pkas
16
camp-dependent potentiation
12
potentiation insulin
12
insulin exocytosis
12
insulin secretory
8
secretory granules
8
potentiation exocytosis
8
riiα riiβ
8
riiβ pkas
8
camp potentiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!