Unlabelled: Although antiretroviral agents have been used successfully in suppressing viral production, they have also been associated with a number of side effects. The antiretroviral toxic neuropathy induces debilitating and extremely difficult to treat pain syndromes that often lead to discontinuation of antiretroviral therapy. Due to the critical need for the identification of novel therapeutic targets to improve antiretroviral neuropathic pain management, we investigated the role of the JNK signalling pathway in the mechanism of antiretroviral painful neuropathy. Mice were exposed to zalcitabine (2',3'-dideoxycytidine, ddC) and stavudine (2',3'-didehydro-3'-deoxythymidine, d4T) that induced a persistent mechanical allodynia and a transient cold allodynia. Treatment with the JNK blocker SP600125 before antiretroviral administration abolished mechanical hypersensitivity with no effect on thermal response. A robust spinal JNK overphosphorylation was observed on post-injection day 1 and 3, along with a JNK-dependent increase in p-c-Jun and ATF3 protein levels. Co-immunoprecipitation experiments showed the presence of a heterodimeric complex between ATF3 and c-Jun indicating that these transcription factors can act together to regulate transcription through heterodimerization. A rise in BDNF and caspase-3 protein levels was detected on day 1 and BDNF sequestration prevented both caspase-3 and p-JNK increase. These data suggest that BDNF plays a role in the early stages of ddC-induced allodynia by promoting apoptotic events and the activation of a hypernociceptive JNK-mediated pathway. We illustrated the activation of a BDNF-mediated JNK pathway involved in the early events responsible for the promotion of neuropathic pain, leading to a better knowledge of the mechanisms involved in the antiretroviral neuropathy.
Summary: JNK blockade prevents antiretroviral-induced pain hypersensitivity. This may represent a potential prophylactic treatment of neuropathic pain to improve antiretroviral tolerability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2016.02.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!