Early molecular response (EMR, BCR-ABL1 (IS)⩽10% at 3 months) is a strong predictor of outcome in imatinib-treated chronic phase chronic myeloid leukemia (CP-CML) patients, but for patients who transform early, 3 months may be too late for effective therapeutic intervention. Here, we employed multiplex cytokine profiling of plasma samples to test newly diagnosed CP-CML patients who subsequently received imatinib treatment. A wide range of pro-inflammatory and angiogenesis-promoting cytokines, chemokines and growth factors were elevated in the plasma of CML patients compared with that of healthy donors. Most of these normalized after tyrosine kinase inhibitor treatment while others remained high in remission samples. Importantly, we identified TGF-α and IL-6 as novel biomarkers with high diagnostic plasma levels strongly predictive of subsequent failure to achieve EMR and deep molecular response, as well as transformation to blast crisis and event-free survival. Interestingly, high TGF-α alone can also delineate a poor response group raising the possibility of a pathogenic role. This suggests that the incorporation of these simple measurements to the diagnostic work-up of CP-CML patients may enable therapy intensity to be individualized early according to the cytokine-risk profile of the patient.

Download full-text PDF

Source
http://dx.doi.org/10.1038/leu.2016.34DOI Listing

Publication Analysis

Top Keywords

molecular response
12
cp-cml patients
12
tgf-α il-6
8
plasma levels
8
cml patients
8
early molecular
8
patients
6
plasma
4
il-6 plasma
4
levels selectively
4

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Encorafenib + cetuximab (EC) is approved for previously treated BRAF V600E-mutant metastatic colorectal cancer (mCRC) based on the BEACON phase 3 study. Historically, first-line treatment of BRAF V600E-mutant mCRC with chemotherapy regimens has had limited efficacy. The phase 3 BREAKWATER study investigated EC+mFOLFOX6 versus standard of care (SOC) in patients with previously untreated BRAF V600E mCRC.

View Article and Find Full Text PDF

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!