Background: Nitrogen fixation has been established in protokaryotic model Escherichia coli by transferring a minimal nif gene cluster composed of 9 genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV) from Paenibacillus sp. WLY78. However, the nitrogenase activity in the recombinant E. coli 78-7 is only 10 % of that observed in wild-type Paenibacillus. Thus, it is necessary to increase nitrogenase activity through synthetic biology.
Results: In order to increase nitrogenase activity in heterologous host, a total of 28 selected genes from Paenibacillus sp. WLY78 and Klebsiella oxytoca were placed under the control of Paenibacillus nif promoter in two different vectors and then they are separately or combinationally transferred to the recombinant E. coli 78-7. Our results demonstrate that Paenibacillus suf operon (Fe-S cluster assembly) and the potential electron transport genes pfoAB, fldA and fer can increase nitrogenase activity. Also, K. oxytoca nifSU (Fe-S cluster assembly) and nifFJ (electron transport specific for nitrogenase) can increase nitrogenase activity. Especially, the combined assembly of the potential Paenibacillus electron transporter genes (pfoABfldA) with K. oxytoca nifSU recovers 50.1 % of wild-type (Paenibacillus) activity. However, K. oxytoca nifWZM and nifQ can not increase activity.
Conclusion: The combined assembly of the potential Paenibacillus electron transporter genes (pfoABfldA) with K. oxytoca nifSU recovers 50.1 % of wild-type (Paenibacillus) activity in the recombinant E. coli 78-7. Our results will provide valuable insights for the enhancement of nitrogenase activity in heterogeneous host and will provide guidance for engineering cereal plants with minimal nif genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761190 | PMC |
http://dx.doi.org/10.1186/s12934-016-0442-6 | DOI Listing |
Biogeochemistry
January 2025
Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
Unlabelled: Nitrogen (N) fixation in association with mosses could be a key source of new N in tropical montane cloud forests since these forests maintain high humidity levels and stable temperatures, both of which are important to N fixation. Here, nutrient availability could be a prominent control of N fixation processes. However, the mechanisms and extent of these controls, particularly in forests at different successional stages, remains unknown to date.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:
The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.
View Article and Find Full Text PDFISME Commun
January 2024
BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China.
Background: Legumes, in the initial event of symbiosis, secrete flavonoids into the rhizosphere to attract rhizobia. This study was conducted to investigate the relationship between crop root exudates and soybean nodule development under intercropping patterns.
Method: A two years field experiments was carried out and combined with pot experiments to quantify the effects of planting mode, i.
J Am Chem Soc
January 2025
Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470.
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!