Background: Over the past two decades, chromosome microdissection has been widely used in diagnostics and research enabling analysis of chromosomes and their regions through probe generation and establishing of chromosome- and chromosome region-specific DNA libraries. However, relatively small physical size of mitotic chromosomes limited the use of the conventional chromosome microdissection for investigation of tiny chromosomal regions.

Results: In the present study, we developed a workflow for mechanical microdissection of giant transcriptionally active lampbrush chromosomes followed by the preparation of whole-chromosome and locus-specific fluorescent in situ hybridization (FISH)-probes and high-throughput sequencing. In particular, chicken (Gallus g. domesticus) lampbrush chromosome regions as small as single chromomeres, individual lateral loops and marker structures were successfully microdissected. The dissected fragments were mapped with high resolution to target regions of the corresponding lampbrush chromosomes. For investigation of RNA-content of lampbrush chromosome structures, samples retrieved by microdissection were subjected to reverse transcription. Using high-throughput sequencing, the isolated regions were successfully assigned to chicken genome coordinates. As a result, we defined precisely the loci for marker structures formation on chicken lampbrush chromosomes 2 and 3. Additionally, our data suggest that large DAPI-positive chromomeres of chicken lampbrush chromosome arms are characterized by low gene density and high repeat content.

Conclusions: The developed technical approach allows to obtain DNA and RNA samples from particular lampbrush chromosome loci, to define precisely the genomic position, extent and sequence content of the dissected regions. The data obtained demonstrate that lampbrush chromosome microdissection provides a unique opportunity to correlate a particular transcriptional domain or a cytological structure with a known DNA sequence. This approach offers great prospects for detailed exploration of functionally significant chromosomal regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761191PMC
http://dx.doi.org/10.1186/s12864-016-2437-4DOI Listing

Publication Analysis

Top Keywords

lampbrush chromosome
20
lampbrush chromosomes
16
high-throughput sequencing
12
chromosome microdissection
12
chromosome
8
lampbrush
8
marker structures
8
chicken lampbrush
8
microdissection
6
chromosomes
6

Similar Publications

Seven Theorems of Joseph G. Gall.

Exp Cell Res

January 2025

School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. Electronic address:

On June 30, 2020, Professor Joseph Grafton Gall announced his retirement at 92. On August 13, 2020, Joe's former trainees and colleagues held a retirement celebration online to celebrate Joe's "Remarkable Career with Astonishing Discoveries", covering Joe's nearly 70 years of education and research. As a representative of Joe's trainees in the 2000s, I gave a speech titled "Seven Theorems of Joe".

View Article and Find Full Text PDF

Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs.

View Article and Find Full Text PDF
Article Synopsis
  • - Reproductive isolation and hybrid sterility prevent genetic mixing between species, but hybridization of bighead and North African catfish in Thailand shows complex evolution, including the formation of all-female lineages that can reproduce clonally.
  • - The study analyzed meiosis in female hybrids, revealing over 95% exhibited chromosome asynapsis yet could produce mature eggs, indicating a unique path to reproductive success.
  • - Findings suggest that the ability of female hybrid catfish to reproduce clonally may offer insights into the effects of hybridization and mechanisms of asexual reproduction, drawing parallels with known clonal species in the animal kingdom.
View Article and Find Full Text PDF

The individual ovarian follicle of sturgeons (Acipenseriformes, Acipenseridae) contains an oocyte surrounded by follicular cells (FCs), basal lamina, and thecal cells. The late stages of the secondary growth of follicles (mid- and advanced vitellogenic) are not fully explained in Acipenseriformes. To explore and discuss the ultrastructure of oocytes, FCs, an egg envelope, and explain how micropylar cells differentiate and the canals of a multiple micropyle are formed, the samples of ovaries of the mature sterlet sturgeon Acipenser ruthenus were examined.

View Article and Find Full Text PDF

Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi.

Genome Biol Evol

December 2023

Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland.

Hybrid taxa from the genus Pelophylax can propagate themselves in a modified way of sexual reproduction called hybridogenesis ensuring the formation of clonal gametes containing the genome of only one parental (host) species. Pelophylax grafi from South-Western Europe is a hybrid composed of P. ridibundus and P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!