High-grade gliomas [HGG (WHO grades III-IV)] are almost invariably fatal. Imaging of HGG is important for orientating diagnosis, prognosis and treatment planning and is crucial for development of novel, more effective therapies. Given the potentially unlimited number of usable tracing molecules and the elevated number of available radionuclides, PET allows gathering multiple informations on HGG including data on tissue metabolism and drug pharmacokinetics. PET studies on the diagnosis, prognosis and treatment of HGG carried out by most frequently used tracers and radionuclides ((11)C and (18)F) and published in 2014 have been reviewed. These studies demonstrate that a thorough choice of tracers may confer elevated diagnostic and prognostic power to PET imaging of HGG. They also suggest that a combination of PET and MRI may give the most complete and reliable imaging information on HGG and that research on hybrid PET/MRI may be paying back in terms of improved diagnosis, prognosis and treatment planning of these deadly tumours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-016-2077-1 | DOI Listing |
J Ultrasound
January 2025
Argentinian Critical Care Ultrasonography Association (ASARUC), Buenos Aires, Argentina.
Hepatic gas gangrene (HGG) is a rare but life-threatening condition typically caused by anaerobic bacteria such as Clostridium perfringens, though Gram-negative bacteria like Escherichia coli and Klebsiella species have also been implicated. Traditionally diagnosed via computed tomography (CT), point-of-care ultrasound (POCUS) has emerged as a valuable tool in critical care settings for its non-invasive, bedside utility. We report the case of a 51-year-old female with choledochal syndrome secondary to cholangiocarcinoma who developed HGG following left extended hepatectomy and biliary reconstruction.
View Article and Find Full Text PDFChilds Nerv Syst
January 2025
Division of Neurosurgery, Department of Surgery, National University Hospital of Singapore, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore.
Congenital infantile brainstem high-grade gliomas (HGGs) are extremely rare. Given the limited literature characterizing this disease, management of these tumors remains challenging. Brainstem HGGs are generally associated with extremely poor prognosis.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Neurosurgery, Royal Prince Alfred Hospital, Sydney 2050, Australia.
Background: Maximal safe resection is the objective of most neuro-oncological operations. Intraoperative magnetic resonance imaging (iMRI) may guide the surgeon to improve the extent of safe resection. There is limited evidence comparing the impact of iMRI on the rates of further resection between tumour types.
View Article and Find Full Text PDFCancer Imaging
January 2025
Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
Background: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significant reproducibility issues. We compare the prediction of overall survival (OS) in recurrent high-grade glioma(HGG) patients undergoing immunotherapy, using deep learning (DL) classification networks along with radiomic signatures derived from manual and convolutional neural networks (CNN) automated segmentation.
View Article and Find Full Text PDFClin Radiol
December 2024
Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China. Electronic address:
Aim: To evaluate the diagnostic performance of nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating isocitrate dehydrogenase (IDH) mutation status.
Materials And Methods: Patients with diagnoses confirmed by postoperative pathology were enrolled. Quantitative parameters, including the relative amide proton transfer-weighted (rAPTW), relative cerebral blood flow (CBF), and apparent diffusion coefficient (ADC) were applied to grade gliomas and correlate IDH mutation status.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!