Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair.

Nucleic Acids Res

Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, SE-41296 Göteborg, Sweden

Published: June 2016

Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914084PMC
http://dx.doi.org/10.1093/nar/gkw114DOI Listing

Publication Analysis

Top Keywords

fret pair
16
study z-dna
12
z-dna transition
12
z-dna
8
transition mechanism
8
fret
5
pair
5
studying z-dna
4
z-dna z-dna
4
z-dna transitions
4

Similar Publications

Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux.

View Article and Find Full Text PDF

Decorating a gold surface with molecular-level control over the positioning of DNA probes was demonstrated using a self-assembled monolayer (SAM) of wireframe DNA nanocube structures. The DNA nanocubes were specifically adsorbed and oriented using thiol-modified DNA on one face of the cube. The DNA nanocube SAM had a uniform coverage over the gold single crystal bead electrode with a separation of 20-30 nm measured by AFM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!