Expression of the downstream regulatory element antagonist modulator (DREAM) protein in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons, high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that transgenic mice expressing a dominant active mutant of DREAM in trigeminal neurons show increased responses following orofacial sensory stimulation, which correlates with a decreased expression of prodynorphin and brain-derived neurotrophic factor in trigeminal ganglia. Genome-wide analysis of trigeminal neurons in daDREAM transgenic mice identified cathepsin L and the monoglyceride lipase as two new DREAM transcriptional targets related to pain. Our results suggest a role for DREAM in the regulation of trigeminal nociception. This article is part of the special article series "Pain".

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13584DOI Listing

Publication Analysis

Top Keywords

trigeminal neurons
12
dream protein
8
transgenic mice
8
dream
6
trigeminal
6
transcriptional repressor
4
repressor dream
4
dream regulates
4
regulates trigeminal
4
trigeminal noxious
4

Similar Publications

Neural Plasticity in Migraine Chronification.

Eur J Neurosci

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.

Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear.

View Article and Find Full Text PDF

Prosocial behaviors are advantageous to social species, but the neural mechanism(s) through which others receive benefit remain unknown. Here, we found that bystander mice display rescue-like behavior (tongue dragging) toward anesthetized cagemates and found that this tongue dragging promotes arousal from anesthesia through a direct tongue-brain circuit. We found that a direct circuit from the tongue → glutamatergic neurons in the mesencephalic trigeminal nucleus (MTN) → noradrenergic neurons in the locus coeruleus (LC) drives rapid arousal in the anesthetized mice that receive the rescue-like behavior from bystanders.

View Article and Find Full Text PDF

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

Introduction: Ocular pain is a common complaint to eye care providers, associated with a variety of ocular conditions, among which dry eye disease (DED) is affecting millions of people worldwide. Despite being highly prevalent, ocular pain is not managed adequately in the clinic.

Objectives: The aim of this study was to investigate the analgesic potential of neurokinin-1 receptor (NK1R) antagonism in DED.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!